A model-based MR parameter mapping network robust to substantial variations in acquisition settings

被引:1
|
作者
Lu, Qiqi [1 ,2 ,3 ,4 ,5 ,6 ]
Li, Jialong [1 ,2 ,3 ,4 ,5 ,6 ]
Lian, Zifeng [1 ,2 ,3 ,4 ,5 ,6 ]
Zhang, Xinyuan [1 ,2 ]
Feng, Qianjin [1 ,2 ]
Chen, Wufan [1 ,2 ]
Ma, Jianhua [1 ,2 ]
Feng, Yanqiu [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou 510000, Peoples R China
[2] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou 510000, Peoples R China
[3] Southern Med Univ, Guangdong Hong Kong Macao Greater Bay Area Ctr Bra, Hong Kong 510000, Guangdong, Peoples R China
[4] Southern Med Univ, Key Lab Mental Hlth Minist Educ & Guangdong, Guangzhou 510000, Peoples R China
[5] Southern Med Univ, Guangdong Hong Kong Joint Lab Psychiat Disorders, Guangzhou 510000, Guangdong, Peoples R China
[6] Southern Med Univ, Shunde Hosp, Peoples Hosp Shunde 1, Dept Radiol, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic resonance imaging; Parameter mapping; Deep learning; Regularization; RELAXATION-TIMES; INVERSE PROBLEMS; RECONSTRUCTION; REGULARIZATION; BRAIN; ALGORITHM; TISSUE;
D O I
10.1016/j.media.2024.103148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning methods show great potential for the efficient and precise estimation of quantitative parameter maps from multiple magnetic resonance (MR) images. Current deep learning-based MR parameter mapping (MPM) methods are mostly trained and tested using data with specific acquisition settings. However, scan protocols usually vary with centers, scanners, and studies in practice. Thus, deep learning methods applicable to MPM with varying acquisition settings are highly required but still rarely investigated. In this work, we develop a model-based deep network termed MMPM-Net for robust MPM with varying acquisition settings. A deep learning-based denoiser is introduced to construct the regularization term in the nonlinear inversion problem of MPM. The alternating direction method of multipliers is used to solve the optimization problem and then unrolled to construct MMPM-Net. The variation in acquisition parameters can be addressed by the data fidelity component in MMPM-Net. Extensive experiments are performed on R2 mapping and R1 mapping datasets with substantial variations in acquisition settings, and the results demonstrate that the proposed MMPM-Net method outperforms other state-of-the-art MR parameter mapping methods both qualitatively and quantitatively.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Highly accelerated parameter mapping using model-based alternating reconstruction coupling fitting
    Li, Shaohang
    Wang, Lili
    Priest, Andrew N.
    Horvat-Menih, Ines
    Mendichovszky, Iosif A.
    Gallagher, Ferdia A.
    Wang, He
    Li, Hao
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (14):
  • [22] Model-Based Acceleration of Parameter Mapping (MAP) for Saturation Prepared Radially Acquired Data
    Tran-Gia, Johannes
    Staeb, Daniel
    Wech, Tobias
    Hahn, Dietbert
    Koestler, Herbert
    MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (06) : 1524 - 1534
  • [23] Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method
    Jun, Yohan
    Shin, Hyungseob
    Eo, Taejoon
    Kim, Taeseong
    Hwang, Dosik
    MEDICAL IMAGE ANALYSIS, 2021, 70
  • [24] Surrogate model-based inverse parameter estimation in deep drawing using automatic knowledge acquisition
    Ryser, Matthias
    Neuhauser, Felix M.
    Hein, Christoph
    Hora, Pavel
    Bambach, Markus
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 117 (3-4): : 997 - 1013
  • [25] Comparison of Robust Model-based Control Strategies Used for a Heat Exchanger Network
    Oravec, Juraj
    Bakosova, Monika
    Meszaros, Alajos
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 397 - 402
  • [26] Robust model-based sampling designs
    Welsh, A. H.
    Wiens, Douglas P.
    STATISTICS AND COMPUTING, 2013, 23 (06) : 689 - 701
  • [27] A Robust Model-based Iris Segmentation
    Sreecholpech, Chirayuth
    Thainimit, Somying
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2009), 2009, : 599 - 602
  • [28] A model-based framework for robust design
    Al-Widyan, K
    Angeles, J
    Cervantes-Sanchez, J
    RECENT ADVANCES IN INTEGRATED DESIGN AND MANUFACTURING IN MECHANICAL ENGINEERING, 2003, : 431 - 442
  • [29] A model-based formulation of robust design
    Al-Widyan, K
    Angeles, J
    JOURNAL OF MECHANICAL DESIGN, 2005, 127 (03) : 388 - 396
  • [30] Robust model-based sampling designs
    A. H. Welsh
    Douglas P. Wiens
    Statistics and Computing, 2013, 23 : 689 - 701