A model-based MR parameter mapping network robust to substantial variations in acquisition settings

被引:1
|
作者
Lu, Qiqi [1 ,2 ,3 ,4 ,5 ,6 ]
Li, Jialong [1 ,2 ,3 ,4 ,5 ,6 ]
Lian, Zifeng [1 ,2 ,3 ,4 ,5 ,6 ]
Zhang, Xinyuan [1 ,2 ]
Feng, Qianjin [1 ,2 ]
Chen, Wufan [1 ,2 ]
Ma, Jianhua [1 ,2 ]
Feng, Yanqiu [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou 510000, Peoples R China
[2] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou 510000, Peoples R China
[3] Southern Med Univ, Guangdong Hong Kong Macao Greater Bay Area Ctr Bra, Hong Kong 510000, Guangdong, Peoples R China
[4] Southern Med Univ, Key Lab Mental Hlth Minist Educ & Guangdong, Guangzhou 510000, Peoples R China
[5] Southern Med Univ, Guangdong Hong Kong Joint Lab Psychiat Disorders, Guangzhou 510000, Guangdong, Peoples R China
[6] Southern Med Univ, Shunde Hosp, Peoples Hosp Shunde 1, Dept Radiol, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic resonance imaging; Parameter mapping; Deep learning; Regularization; RELAXATION-TIMES; INVERSE PROBLEMS; RECONSTRUCTION; REGULARIZATION; BRAIN; ALGORITHM; TISSUE;
D O I
10.1016/j.media.2024.103148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning methods show great potential for the efficient and precise estimation of quantitative parameter maps from multiple magnetic resonance (MR) images. Current deep learning-based MR parameter mapping (MPM) methods are mostly trained and tested using data with specific acquisition settings. However, scan protocols usually vary with centers, scanners, and studies in practice. Thus, deep learning methods applicable to MPM with varying acquisition settings are highly required but still rarely investigated. In this work, we develop a model-based deep network termed MMPM-Net for robust MPM with varying acquisition settings. A deep learning-based denoiser is introduced to construct the regularization term in the nonlinear inversion problem of MPM. The alternating direction method of multipliers is used to solve the optimization problem and then unrolled to construct MMPM-Net. The variation in acquisition parameters can be addressed by the data fidelity component in MMPM-Net. Extensive experiments are performed on R2 mapping and R1 mapping datasets with substantial variations in acquisition settings, and the results demonstrate that the proposed MMPM-Net method outperforms other state-of-the-art MR parameter mapping methods both qualitatively and quantitatively.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Model-Based Convolutional De-Aliasing Network Learning for Parallel MR Imaging
    Chen, Yanxia
    Xiao, Taohui
    Li, Cheng
    Liu, Qiegen
    Wang, Shanshan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 30 - 38
  • [32] Multiresolution, model-based segmentation of MR angiograms
    Summers, PE
    Bhalerao, AH
    Hawkes, DJ
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 1997, 7 (06) : 950 - 957
  • [33] Model-based neural algorithms for parameter estimation
    Skantze, FP
    INFORMATION SCIENCES, 1998, 104 (1-2) : 107 - 128
  • [34] Coupled Motion and Activity Estimation from PET and MR Data with Motion Model-Based Parameter Reduction
    Balfour, Daniel R.
    Kolbitsch, Christoph
    Reader, Andrew J.
    King, Andrew P.
    Marsden, Paul K.
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [35] Addressing parameter identifiability by model-based experimentation
    Raue, A.
    Kreutz, C.
    Maiwald, T.
    Klingmueller, U.
    Timmer, J.
    IET SYSTEMS BIOLOGY, 2011, 5 (02) : 120 - U78
  • [36] OPTIMAL PARAMETER ESTIMATION FOR MODEL-BASED QUANTIZATION
    Ozerov, Alexey
    Kleijn, W. Bastiaan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2497 - +
  • [37] Model-based Optimization of Ventilator Settings for Bedside Application
    Scherer, J.
    Schranz, C.
    Knoerzer, A.
    Moeller, K.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [38] MODEL-BASED VENTILATOR SETTINGS IN PRESSURE CONTROLLED VENTILATION
    Schranz, C.
    Becher, T.
    Schaedler, D.
    Weiler, N.
    Moeller, K.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [39] MODEL-BASED VENTILATOR SETTINGS IN PRESSURE CONTROLLED VENTILATION
    Schranz, C.
    Becher, T.
    Schaedler, D.
    Weiler, N.
    Moeller, K.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [40] Fast T2 Mapping with Multiple Echo, Caesar Cipher Acquisition and Model-Based Reconstruction
    Lankford, Christopher L.
    Dortch, Richard D.
    Does, Mark D.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (03) : 1065 - 1074