Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks

被引:0
|
作者
Cao, Jianhui [1 ]
Zhang, Jianjie [1 ]
Jiao, Xinze [1 ]
Yu, Peibo [1 ]
Zhang, Baobao [2 ]
机构
[1] Xinjiang Univ, Coll Mech Engn, Urumqi 830017, Peoples R China
[2] Xinjiang Univ, Coll Software, Urumqi 830091, Peoples R China
关键词
gearbox fault diagnosis; DRSN-CW model; cross-attention mechanism; frequency domain features; noise; NEURAL-NETWORK; MACHINE;
D O I
10.3390/s24144633
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Gearbox fault diagnosis is essential in the maintenance and preventive repair of industrial systems. However, in actual working environments, noise frequently interferes with fault signals, consequently reducing the accuracy of fault diagnosis. To effectively address this issue, this paper incorporates the noise attenuation of the DRSN-CW model. A compound fault detection method for gearboxes, integrated with a cross-attention module, is proposed to enhance fault diagnosis performance in noisy environments. First, frequency domain features are extracted from the public dataset by using the fast Fourier transform (FFT). Furthermore, the cross-attention mechanism model is inserted in the optimal position to improve the extraction and recognition rate of global and local fault features. Finally, noise-related features are filtered through soft thresholds within the network structure to efficiently mitigate noise interference. The experimental results show that, compared to existing network models, the proposed model exhibits superior noise immunity and high-precision fault diagnosis performance.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Deep Residual Shrinkage Networks for Fault Diagnosis
    Zhao, Minghang
    Zhong, Shisheng
    Fu, Xuyun
    Tang, Baoping
    Pecht, Michael
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (07) : 4681 - 4690
  • [2] Small sample gearbox fault diagnosis based on improved deep forest in noisy environments
    Shao, Haidong
    Ming, Yuhang
    Liu, Yiyu
    Liu, Bin
    [J]. NONDESTRUCTIVE TESTING AND EVALUATION, 2024,
  • [3] A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks
    Tong, Jinyu
    Tang, Shiyu
    Wu, Yi
    Pan, Haiyang
    Zheng, Jinde
    [J]. MEASUREMENT, 2023, 206
  • [4] Deep residual networks-based intelligent fault diagnosis method of planetary gearboxes in cloud environments
    Huang, Xinghua
    Qi, Guanqiu
    Mazur, Neal
    Chai, Yi
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2022, 116
  • [5] Adaptive Multi-Channel Residual Shrinkage Networks for the Diagnosis of Multi-Fault Gearbox
    Chen, Wenxian
    Sun, Kuangchi
    Li, Xinxin
    Xiao, Yanan
    Xiang, Jiangshu
    Mao, Hanling
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [6] An Intelligent Quadrotor Fault Diagnosis Method Based on Novel Deep Residual Shrinkage Network
    Yang, Pu
    Geng, Huilin
    Wen, Chenwan
    Liu, Peng
    [J]. DRONES, 2021, 5 (04)
  • [7] A novel method for transformer fault diagnosis based on refined deep residual shrinkage network
    Hu, Hao
    Ma, Xin
    Shang, Yizi
    [J]. IET ELECTRIC POWER APPLICATIONS, 2022, 16 (02) : 206 - 223
  • [8] A Photovoltaic System Fault Identification Method Based on Improved Deep Residual Shrinkage Networks
    Cui, Fengxin
    Tu, Yanzhao
    Gao, Wei
    [J]. ENERGIES, 2022, 15 (11)
  • [9] Bearing fault diagnosis under variable working conditions based on deep residual shrinkage networks
    Chi, Fulin
    Yang, Xinyu
    Shao, Siyu
    Zhang, Qiang
    Zhao, Yuwei
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (04): : 1146 - 1156
  • [10] Rolling Bearing Fault Diagnosis Using Improved Deep Residual Shrinkage Networks
    Zhang, Zhijin
    Li, He
    Chen, Lei
    Han, Ping
    [J]. SHOCK AND VIBRATION, 2021, 2021