Rolling Bearing Fault Diagnosis Using Improved Deep Residual Shrinkage Networks

被引:10
|
作者
Zhang, Zhijin [1 ]
Li, He [1 ]
Chen, Lei [2 ]
Han, Ping [1 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
[2] Midea Grp, Res Inst, Foshan 528311, Peoples R China
基金
中国国家自然科学基金;
关键词
FEATURE-EXTRACTION; BELIEF NETWORK; MACHINERY; SPECTRUM; MODEL;
D O I
10.1155/2021/9942249
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
To improve feature learning ability and accurately diagnose the faults of rolling bearings under a strong background noise environment, we present a new shrinkage function named leaky thresholding to replace the soft thresholding in the deep residual shrinkage networks (DRSNs). In this work, we discover that such improved deep residual shrinkage networks (IDRSNs) can be realized by using a group searching method to optimize the slope value of leaky thresholding, and leaky thresholding in the IDRSNs can more effectively eliminate the noise of signal features. We highlight that our techniques can significantly improve the performance on various fundamental tasks. Experimental results show that IDRSNs achieve better fault diagnosis results on noised vibration signals compared with DRSNs. Moreover, we also provide a normalized processing to further improve the fault diagnosing accuracy of rolling bearing under a strong background noise environment.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks
    Tong, Jinyu
    Tang, Shiyu
    Wu, Yi
    Pan, Haiyang
    Zheng, Jinde
    MEASUREMENT, 2023, 206
  • [2] Fault diagnosis of rolling bearing based on deep residual shrinkage network
    Che C.
    Wang H.
    Ni X.
    Lin R.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (07): : 1399 - 1406
  • [3] Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on Improved Deep Residual Shrinkage Network
    Bian W.
    Deng A.
    Liu D.
    Zhao M.
    Liu Y.
    Li J.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 202 - 214
  • [4] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Linjun Wang
    Tengxiao Zou
    Kanglin Cai
    Yang Liu
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46
  • [5] Improved deep residual shrinkage network used for bearing fault diagnosis
    Tang S.
    Tong J.
    Zheng J.
    Pan H.
    Wu Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (18): : 217 - 285
  • [6] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Wang, Linjun
    Zou, Tengxiao
    Cai, Kanglin
    Liu, Yang
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (03)
  • [7] Multi-scale deep residual shrinkage networks with a hybrid attention mechanism for rolling bearing fault diagnosis
    Zhang, Xinliang
    Wang, Yanqi
    Wei, Shengqiang
    Zhou, Yitian
    Jia, Lijie
    JOURNAL OF INSTRUMENTATION, 2024, 19 (05):
  • [8] Deep Residual Shrinkage Networks for Fault Diagnosis
    Zhao, Minghang
    Zhong, Shisheng
    Fu, Xuyun
    Tang, Baoping
    Pecht, Michael
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (07) : 4681 - 4690
  • [9] Fault Diagnosis of Rolling Bearing using Deep Belief Networks
    Tao Jie
    Liu Yi-Lun
    Yang Da-Lian
    Tang Fang
    Liu Chi
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON MATERIAL, ENERGY AND ENVIRONMENT ENGINEERING (ISM3E 2015), 2016, 46 : 566 - 569
  • [10] Deep Spiking Residual Shrinkage Network for Bearing Fault Diagnosis
    Xu, Zongtang
    Ma, Yumei
    Pan, Zhenkuan
    Zheng, Xiaoyang
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1608 - 1613