Deep Spiking Residual Shrinkage Network for Bearing Fault Diagnosis

被引:8
|
作者
Xu, Zongtang [1 ]
Ma, Yumei [1 ]
Pan, Zhenkuan [1 ]
Zheng, Xiaoyang [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearing fault diagnosis; deep learning; soft thresh-olding; spiking neural network (SNN); NEURAL-NETWORKS;
D O I
10.1109/TCYB.2022.3227363
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing fault diagnosis of electrical equipment has been a popular research area in recent years because there are often some faults during continuous operation in production due to the harsh working environment. However, the traditional fault signal processing methods rely on highly expert experience, and some parameters are difficult to be optimized by machine-learning methods. Thus, the satisfactory recognition accuracy of fault diagnosis cannot be achieved in the above methods. In this article, a new model based on the spiking neural network (SNN) is proposed, which is called deep the spiking residual shrinkage network (DSRSN) for bearing fault diagnosis. In the model, attention mechanisms and soft thresholding are introduced to improve the recognition rate under a high-level noise background. The higher recognition accuracy is obtained in the proposed model which is tested on the fault signal dataset under different noise intensities. Meanwhile, the training time is about treble as fast as the training time of the artificial neural network, which is reflecting the high efficiency of SNN.
引用
收藏
页码:1608 / 1613
页数:6
相关论文
共 50 条
  • [1] Improved deep residual shrinkage network used for bearing fault diagnosis
    Tang, Shiyu
    Tong, Jinyu
    Zheng, Jinde
    Pan, Haiyang
    Wu, Yi
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (18): : 217 - 285
  • [2] Bearing fault diagnosis by combining a deep residual shrinkage network and bidirectional LSTM
    Tong, Yizhi
    Wu, Ping
    He, Jiajun
    Zhang, Xujie
    Zhao, Xinlong
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (03)
  • [3] A bearing fault diagnosis method based on adaptive residual shrinkage network
    Sun, Tieyang
    Gao, Jianxiong
    Meng, Lingchao
    Huang, Zhidi
    Yang, Shuai
    Li, Miaomiao
    [J]. MEASUREMENT, 2024, 238
  • [4] Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on Improved Deep Residual Shrinkage Network
    Bian, Wenbin
    Deng, Aidong
    Liu, Dongchuan
    Zhao, Min
    Liu, Yang
    Li, Jing
    [J]. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 202 - 214
  • [5] Rolling Bearing Fault Diagnosis Using Improved Deep Residual Shrinkage Networks
    Zhang, Zhijin
    Li, He
    Chen, Lei
    Han, Ping
    [J]. SHOCK AND VIBRATION, 2021, 2021
  • [6] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Linjun Wang
    Tengxiao Zou
    Kanglin Cai
    Yang Liu
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46
  • [7] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Wang, Linjun
    Zou, Tengxiao
    Cai, Kanglin
    Liu, Yang
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (03)
  • [8] Deep Residual Shrinkage Networks for Fault Diagnosis
    Zhao, Minghang
    Zhong, Shisheng
    Fu, Xuyun
    Tang, Baoping
    Pecht, Michael
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (07) : 4681 - 4690
  • [9] A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks
    Tong, Jinyu
    Tang, Shiyu
    Wu, Yi
    Pan, Haiyang
    Zheng, Jinde
    [J]. MEASUREMENT, 2023, 206
  • [10] Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network
    Sun, Yi
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    Liu, Qi
    [J]. 2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 421 - 425