Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks

被引:0
|
作者
Cao, Jianhui [1 ]
Zhang, Jianjie [1 ]
Jiao, Xinze [1 ]
Yu, Peibo [1 ]
Zhang, Baobao [2 ]
机构
[1] Xinjiang Univ, Coll Mech Engn, Urumqi 830017, Peoples R China
[2] Xinjiang Univ, Coll Software, Urumqi 830091, Peoples R China
关键词
gearbox fault diagnosis; DRSN-CW model; cross-attention mechanism; frequency domain features; noise; NEURAL-NETWORK; MACHINE;
D O I
10.3390/s24144633
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Gearbox fault diagnosis is essential in the maintenance and preventive repair of industrial systems. However, in actual working environments, noise frequently interferes with fault signals, consequently reducing the accuracy of fault diagnosis. To effectively address this issue, this paper incorporates the noise attenuation of the DRSN-CW model. A compound fault detection method for gearboxes, integrated with a cross-attention module, is proposed to enhance fault diagnosis performance in noisy environments. First, frequency domain features are extracted from the public dataset by using the fast Fourier transform (FFT). Furthermore, the cross-attention mechanism model is inserted in the optimal position to improve the extraction and recognition rate of global and local fault features. Finally, noise-related features are filtered through soft thresholds within the network structure to efficiently mitigate noise interference. The experimental results show that, compared to existing network models, the proposed model exhibits superior noise immunity and high-precision fault diagnosis performance.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [31] Deep residual shrinkage networks with adaptively convex global parametric rectifier linear units for fault diagnosis
    Zhang, Zhijin
    Zhang, Chunlei
    Zhang, Xin
    Gao, Sen
    Li, He
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [32] Deep Morphological Shrinkage Convolutional Autoencoder-Based Feature Learning of Vibration Signals for Gearbox Fault Diagnosis
    Ye, Zhuang
    Yue, Shang
    Yang, Pu
    Zhou, Ruixu
    Yu, Jianbo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [33] Photovoltaic DC arc fault detection method based on deep residual shrinkage network
    Zhang, Penghe
    Xue, Yang
    Song, Runan
    Ma, Xiaochen
    Sheng, Dejie
    JOURNAL OF POWER ELECTRONICS, 2024, : 1855 - 1867
  • [34] Gearbox fault diagnosis method based on deep learning multi-task framework
    Chen, Yao
    Liang, Ruijun
    Ran, Wenfeng
    Chen, Weifang
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2023, 14 (03) : 401 - 415
  • [35] Gearbox fault diagnosis with small training samples: An improved deep forest based method
    Shao, Yiwei
    Chen, Jiayu
    Lin, Cuiying
    Wan, Cheng
    Ge, Hongjuan
    Shi, Zhilong
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (08):
  • [36] Planetary gearbox fault diagnosis method based on deep belief network transfer learning
    Chen R.
    Yang X.
    Hu X.
    Li J.
    Chen C.
    Tang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (01): : 127 - 133and150
  • [37] A joint deep learning model for bearing fault diagnosis in noisy environments
    Ji, Min
    Chu, Changsheng
    Yang, Jinghui
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, : 3265 - 3281
  • [38] Gearbox fault diagnosis based on Multi-Scale deep residual learning and stacked LSTM model
    Ravikumar, K. N.
    Yadav, Akhilesh
    Kumar, Hemantha
    Gangadharan, K., V
    Narasimhadhan, A., V
    MEASUREMENT, 2021, 186
  • [39] A Gearbox Fault Diagnosis Method Based on Graph Neural Networks and Markov Transform Fields
    Wang, Haitao
    Liu, Zelin
    Li, Mingjun
    Dai, Xiyang
    Wang, Ruihua
    Shi, Lichen
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 25186 - 25196
  • [40] FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON DEEP LEARNING
    Xiao J.
    Jin J.
    Li C.
    Xu Z.
    Luo S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (05): : 302 - 309