A novel method for transformer fault diagnosis based on refined deep residual shrinkage network

被引:11
|
作者
Hu, Hao [1 ,2 ]
Ma, Xin [2 ,3 ]
Shang, Yizi [3 ]
机构
[1] Yellow River Conservancy Tech Inst, Kaifeng, Peoples R China
[2] North China Univ Water Resources & Elect Power, Zhengzhou, Peoples R China
[3] China Inst Water Resources & Hydropower Res, A-1 Fuxing Rd, Beijing 100038, Peoples R China
关键词
fault diagnosis; learning (artificial intelligence); power transformer protection; transformer oil; ALGORITHM; MODEL;
D O I
10.1049/elp2.12147
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study proposes a novel method to improve the fault identification performance of transformers. First, to couple multiple factors, a high-dimensional feature map composed of the feature gas concentrations and some associated variables is constructed. Second, the deep residual shrinkage network is revised using the updated alternating direction multiplier, and the newly constructed variable soft thresholding is proposed to eliminate constant deviations. In addition, the fast iterative shrinkage-thresholding algorithm is adopted, as it can speed up the determination of the threshold. For the output end, the uniform manifold approximation and projection algorithm are adopted to ensure the integrity of the local optimal solution and the global solution. Compared with traditional dissolved gas analysis methods, the novel refined deep residual shrinkage network exhibits superior precision, which is justified through experiments. The results show that the recognition accuracy of the new model is more than 1.3% higher than that of the existing methods. The new method has good scalability in power applications and fault prevention.
引用
收藏
页码:206 / 223
页数:18
相关论文
共 50 条
  • [1] An Intelligent Quadrotor Fault Diagnosis Method Based on Novel Deep Residual Shrinkage Network
    Yang, Pu
    Geng, Huilin
    Wen, Chenwan
    Liu, Peng
    [J]. DRONES, 2021, 5 (04)
  • [2] A novel power transformer fault diagnosis method based on data augmentation for KPCA and deep residual network
    Liu, Xiaozhi
    Xie, Jie
    Luo, Yanhong
    Yang, Dongsheng
    [J]. ENERGY REPORTS, 2023, 9 : 620 - 627
  • [3] A novel power transformer fault diagnosis method based on data augmentation for KPCA and deep residual network
    Liu, Xiaozhi
    Xie, Jie
    Luo, Yanhong
    Yang, Dongsheng
    [J]. ENERGY REPORTS, 2023, 9 : 620 - 627
  • [4] A bearing fault diagnosis method based on adaptive residual shrinkage network
    Sun, Tieyang
    Gao, Jianxiong
    Meng, Lingchao
    Huang, Zhidi
    Yang, Shuai
    Li, Miaomiao
    [J]. MEASUREMENT, 2024, 238
  • [5] Deep Spiking Residual Shrinkage Network for Bearing Fault Diagnosis
    Xu, Zongtang
    Ma, Yumei
    Pan, Zhenkuan
    Zheng, Xiaoyang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1608 - 1613
  • [6] Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on Improved Deep Residual Shrinkage Network
    Bian, Wenbin
    Deng, Aidong
    Liu, Dongchuan
    Zhao, Min
    Liu, Yang
    Li, Jing
    [J]. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 202 - 214
  • [7] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Linjun Wang
    Tengxiao Zou
    Kanglin Cai
    Yang Liu
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46
  • [8] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Wang, Linjun
    Zou, Tengxiao
    Cai, Kanglin
    Liu, Yang
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (03)
  • [9] Improved deep residual shrinkage network used for bearing fault diagnosis
    Tang, Shiyu
    Tong, Jinyu
    Zheng, Jinde
    Pan, Haiyang
    Wu, Yi
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (18): : 217 - 285
  • [10] Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks
    Cao, Jianhui
    Zhang, Jianjie
    Jiao, Xinze
    Yu, Peibo
    Zhang, Baobao
    [J]. SENSORS, 2024, 24 (14)