An Intelligent Quadrotor Fault Diagnosis Method Based on Novel Deep Residual Shrinkage Network

被引:11
|
作者
Yang, Pu [1 ]
Geng, Huilin [1 ]
Wen, Chenwan [1 ]
Liu, Peng [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Automat, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
quadrotor; minor fault diagnosis; network design process pattern; 1D-WIDRSN;
D O I
10.3390/drones5040133
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this paper, a fault diagnosis algorithm named improved one-dimensional deep residual shrinkage network with a wide convolutional layer (1D-WIDRSN) is proposed for quadrotor propellers with minor damage, which can effectively identify the fault classes of quadrotor under interference information, and without additional denoising procedures. In a word, that fault diagnosis algorithm can locate and diagnose the early minor faults of the quadrotor based on the flight data, so that the quadrotor can be repaired before serious faults occur, so as to prolong the service life of quadrotor. First, the sliding window method is used to expand the number of samples. Then, a novel progressive semi-soft threshold is proposed to replace the soft threshold in the deep residual shrinkage network (DRSN), so the noise of signal features can be eliminated more effectively. Finally, based on the deep residual shrinkage network, the wide convolution layer and DroupBlock method are introduced to further enhance the anti-noise and over-fitting ability of the model, thus the model can effectively extract fault features and classify faults. Experimental results show that 1D-WIDRSN applied to the minimal fault diagnosis model of quadrotor propellers can accurately identify the fault category in the interference information, and the diagnosis accuracy is over 98%.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A novel method for transformer fault diagnosis based on refined deep residual shrinkage network
    Hu, Hao
    Ma, Xin
    Shang, Yizi
    [J]. IET ELECTRIC POWER APPLICATIONS, 2022, 16 (02) : 206 - 223
  • [2] A bearing fault diagnosis method based on adaptive residual shrinkage network
    Sun, Tieyang
    Gao, Jianxiong
    Meng, Lingchao
    Huang, Zhidi
    Yang, Shuai
    Li, Miaomiao
    [J]. MEASUREMENT, 2024, 238
  • [3] Deep Spiking Residual Shrinkage Network for Bearing Fault Diagnosis
    Xu, Zongtang
    Ma, Yumei
    Pan, Zhenkuan
    Zheng, Xiaoyang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1608 - 1613
  • [4] Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on Improved Deep Residual Shrinkage Network
    Bian, Wenbin
    Deng, Aidong
    Liu, Dongchuan
    Zhao, Min
    Liu, Yang
    Li, Jing
    [J]. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 202 - 214
  • [5] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Linjun Wang
    Tengxiao Zou
    Kanglin Cai
    Yang Liu
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46
  • [6] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Wang, Linjun
    Zou, Tengxiao
    Cai, Kanglin
    Liu, Yang
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (03)
  • [7] An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network
    Peng, Binsen
    Xia, Hong
    Lv, Xinzhi
    Annor-Nyarko, M.
    Zhu, Shaomin
    Liu, Yongkuo
    Zhang, Jiyu
    [J]. APPLIED INTELLIGENCE, 2022, 52 (03) : 3051 - 3065
  • [8] An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network
    Binsen Peng
    Hong Xia
    Xinzhi Lv
    M. Annor-Nyarko
    Shaomin Zhu
    Yongkuo Liu
    Jiyu Zhang
    [J]. Applied Intelligence, 2022, 52 : 3051 - 3065
  • [9] Improved deep residual shrinkage network used for bearing fault diagnosis
    Tang, Shiyu
    Tong, Jinyu
    Zheng, Jinde
    Pan, Haiyang
    Wu, Yi
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (18): : 217 - 285
  • [10] Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks
    Cao, Jianhui
    Zhang, Jianjie
    Jiao, Xinze
    Yu, Peibo
    Zhang, Baobao
    [J]. SENSORS, 2024, 24 (14)