Algebraic uniqueness of Kahler-Ricci flow limits and optimal degenerations of Fano varieties

被引:1
|
作者
Han, Jiyuan [1 ]
Li, Chi [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08901 USA
基金
美国国家科学基金会;
关键词
UNIFORM K-STABILITY; EINSTEIN METRICS; OKOUNKOV BODIES; CONVEX-BODIES; LOWER BOUNDS; VOLUME; APPROXIMATION; VALUATIONS; EXISTENCE; MANIFOLDS;
D O I
10.2140/gt.2024.28.539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for any Fano manifold X, the special R-test configuration that minimizes the H-NA functional is unique and has a K-semistable Q-Fano central fiber (W; epsilon). Moreover there is a unique K-polystable degeneration of (W; epsilon). As an application, we confirm the conjecture of Chen, Sun and Wang about the algebraic uniqueness for Kahler-Ricci flow limits on Fano manifolds, which implies that the Gromov-Hausdorff limit of the flow does not depend on the choice of initial Kahler metrics. The results are achieved by studying algebraic optimal degeneration problems via new functionals for real valuations over Q-Fano varieties, which are analogous to the minimization problem for normalized volumes.
引用
收藏
页码:539 / 592
页数:54
相关论文
共 50 条
  • [31] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [32] Convergence of a Kahler-Ricci flow
    Sesum, N
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [33] The twisted Kahler-Ricci flow
    Collins, Tristan C.
    Szekelyhidi, Gabor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 179 - 205
  • [34] A modified Kahler-Ricci flow
    Zhang, Zhou
    MATHEMATISCHE ANNALEN, 2009, 345 (03) : 559 - 579
  • [35] An Introduction to the Kahler-Ricci Flow
    Song, Jian
    Weinkove, Ben
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 89 - 188
  • [36] Monotonicity and Kahler-Ricci flow
    Ni, L
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 149 - 165
  • [37] On convergence of the Kahler-Ricci flow
    Munteanu, Ovidiu
    Szekelyhidi, Gabor
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (05) : 887 - 903
  • [38] Hyperbolic Kahler-Ricci flow
    Xu Chao
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 3027 - 3036
  • [39] ON THE WEAK KAHLER-RICCI FLOW
    Chen, X. X.
    Tian, G.
    Zhang, Z.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 2849 - 2863
  • [40] A note on Kahler-Ricci flow
    Yu, Chengjie
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (1-2) : 191 - 201