Algebraic uniqueness of Kahler-Ricci flow limits and optimal degenerations of Fano varieties

被引:1
|
作者
Han, Jiyuan [1 ]
Li, Chi [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08901 USA
基金
美国国家科学基金会;
关键词
UNIFORM K-STABILITY; EINSTEIN METRICS; OKOUNKOV BODIES; CONVEX-BODIES; LOWER BOUNDS; VOLUME; APPROXIMATION; VALUATIONS; EXISTENCE; MANIFOLDS;
D O I
10.2140/gt.2024.28.539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for any Fano manifold X, the special R-test configuration that minimizes the H-NA functional is unique and has a K-semistable Q-Fano central fiber (W; epsilon). Moreover there is a unique K-polystable degeneration of (W; epsilon). As an application, we confirm the conjecture of Chen, Sun and Wang about the algebraic uniqueness for Kahler-Ricci flow limits on Fano manifolds, which implies that the Gromov-Hausdorff limit of the flow does not depend on the choice of initial Kahler metrics. The results are achieved by studying algebraic optimal degeneration problems via new functionals for real valuations over Q-Fano varieties, which are analogous to the minimization problem for normalized volumes.
引用
收藏
页码:539 / 592
页数:54
相关论文
共 50 条
  • [21] Uniqueness and short time regularity of the weak Kahler-Ricci flow
    Di Nezza, Eleonora
    Lu, Chinh H.
    ADVANCES IN MATHEMATICS, 2017, 305 : 953 - 993
  • [22] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [23] Conical Kahler-Ricci flows on Fano manifolds
    Liu, Jiawei
    Zhang, Xi
    ADVANCES IN MATHEMATICS, 2017, 307 : 1324 - 1371
  • [24] Regularity of Kahler-Ricci flows on Fano manifolds
    Tian, Gang
    Zhang, Zhenlei
    ACTA MATHEMATICA, 2016, 216 (01) : 127 - 176
  • [25] The Conical Kahler-Ricci Flow with Weak Initial Data on Fano Manifolds
    Liu, Jiawei
    Zhang, Xi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (17) : 5343 - 5384
  • [26] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [27] Kahler-Ricci flow of cusp singularities on quasi projective varieties
    Chau, Albert
    Li, Ka-Fai
    Shen, Liangming
    ADVANCES IN MATHEMATICS, 2018, 339 : 310 - 335
  • [28] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [29] Characterization of Einstein-Fano Manifolds via the Kahler-Ricci Flow
    Pali, Nefton
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) : 3241 - 3274
  • [30] Notes on Kahler-Ricci Flow
    Tian, Gang
    RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 105 - 136