LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES

被引:4
|
作者
刘军
杨大春
袁文
机构
[1] LaboratoryofMathematicsandComplexSystems,SchoolofMathematicalSciences,BeijingNormalUniversity
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on R~n. Let HAp,q (R~n) be the anisotropic Hardy-Lorentz spaces associated with A defined via the nontangential grand maximal function. In this article, the authors characterize HAp,q (R~n) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley g*λ-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(R~n). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on R~n. Moreover, the range of λ in the g*λ-function characterization of HAp,q (R~n) coincides with the best known one in the classical Hardy space Hp(R~n) or in the anisotropic Hardy space HAp (R~n).
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [41] Parameterized Littlewood-Paley operators and area integrals on weak hardy spaces
    Yan Lin
    Zong Guang Liu
    Dong Lan Mao
    Zhen Kai Sun
    Acta Mathematica Sinica, English Series, 2013, 29 : 1857 - 1870
  • [42] Littlewood-Paley characterizations of fractional Sobolev spaces via averages on balls
    Dai, Feng
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (06) : 1135 - 1163
  • [43] Littlewood-Paley Characterizations of Weighted Anisotropic Triebel-Lizorkin Spaces via Averages on Balls I
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (04): : 397 - 418
  • [44] Parameterized Littlewood-Paley operators and area integrals on weak hardy spaces
    Lin, Yan
    Liu, Zong Guang
    Mao, Dong Lan
    Sun, Zhen Kai
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (10) : 1857 - 1870
  • [45] Parameterized Littlewood-Paley Operators and Area Integrals on Weak Hardy Spaces
    Yan LIN
    Zong Guang LIU
    Dong Lan MAO
    Zhen Kai SUN
    Acta Mathematica Sinica,English Series, 2013, (10) : 1857 - 1870
  • [46] Littlewood-Paley functions and Sobolev spaces
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 : 273 - 297
  • [47] LITTLEWOOD-PALEY THEOREM IN THE BA SPACES
    MA, JG
    CHINESE SCIENCE BULLETIN, 1989, 34 (18): : 1507 - 1513
  • [48] Littlewood-Paley Characterizations of Weighted Anisotropic Triebel-Lizorkin Spaces via Averages on Balls II
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (01): : 1 - 26
  • [49] LIPSCHITZ SPACES, LITTLEWOOD-PALEY SPACES AND CONVOLUTEURS
    JOHNSON, RL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A757 - A757
  • [50] LIPSCHITZ SPACES, LITTLEWOOD-PALEY SPACES, AND CONVOLUTEURS
    JOHNSON, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 29 (JUL) : 127 - 141