LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES

被引:4
|
作者
刘军
杨大春
袁文
机构
[1] LaboratoryofMathematicsandComplexSystems,SchoolofMathematicalSciences,BeijingNormalUniversity
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on R~n. Let HAp,q (R~n) be the anisotropic Hardy-Lorentz spaces associated with A defined via the nontangential grand maximal function. In this article, the authors characterize HAp,q (R~n) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley g*λ-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(R~n). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on R~n. Moreover, the range of λ in the g*λ-function characterization of HAp,q (R~n) coincides with the best known one in the classical Hardy space Hp(R~n) or in the anisotropic Hardy space HAp (R~n).
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [31] Boundedness for Multilinear Littlewood-Paley Operators on Certain Hardy Spaces
    Liu, Lanzhe
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03): : 315 - 328
  • [32] Dual Spaces of Anisotropic Variable Hardy-Lorentz Spaces and Their Applications
    Liu, Jun
    Lu, Yaqian
    Huang, Long
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (02) : 913 - 942
  • [33] Anisotropic variable Hardy-Lorentz spaces and their real interpolation
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (01) : 356 - 393
  • [34] Musielak-Orlicz-Lorentz Hardy Spaces: Maximal Function, Finite Atomic, and Littlewood-Paley Characterizations with Applications to Dual Spaces and Summability of Fourier Transforms
    Jia, Hongchao
    Chang, Der-Chen
    Weisz, Ferenc
    Yang, Dachun
    Yuan, Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (01) : 1 - 77
  • [35] Boundedness of the Bilinear Littlewood-Paley Square Function on Variable Lorentz Spaces
    Kulak, Oznur
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [36] MOLECULAR CHARACTERIZATION OF ANISOTROPIC VARIABLE HARDY-LORENTZ SPACES
    Liu, Xiong
    Qiu, Xiaoli
    Li, Baode
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (02) : 211 - 233
  • [37] Equivalent characterizations of martingale Hardy-Lorentz spaces with variable exponents
    Weisz, Ferenc
    REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (03): : 783 - 800
  • [38] Intrinsic Square Function Characterizations of Variable Hardy-Lorentz Spaces
    Saibi, Khedoudj
    JOURNAL OF FUNCTION SPACES, 2020, 2021
  • [39] A Littlewood-Paley Type Decomposition and Weighted Hardy Spaces Associated with Operators
    Xuan Thinh Duong
    Li, Ji
    Yan, Lixin
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) : 1617 - 1646
  • [40] Parameterized Littlewood-Paley Operators and Area Integrals on Weak Hardy Spaces
    Yan LIN
    Zong Guang LIU
    Dong Lan MAO
    Zhen Kai SUN
    ActaMathematicaSinica, 2013, 29 (10) : 1857 - 1870