LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES

被引:4
|
作者
刘军
杨大春
袁文
机构
[1] LaboratoryofMathematicsandComplexSystems,SchoolofMathematicalSciences,BeijingNormalUniversity
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on R~n. Let HAp,q (R~n) be the anisotropic Hardy-Lorentz spaces associated with A defined via the nontangential grand maximal function. In this article, the authors characterize HAp,q (R~n) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley g*λ-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(R~n). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on R~n. Moreover, the range of λ in the g*λ-function characterization of HAp,q (R~n) coincides with the best known one in the classical Hardy space Hp(R~n) or in the anisotropic Hardy space HAp (R~n).
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [21] LITTLEWOOD-PALEY gλ*-FUNCTION CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Yan, X.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2024, 13 (01): : 100 - 123
  • [22] LITTLEWOOD-PALEY SPACES
    Ho, Kwok-Pun
    MATHEMATICA SCANDINAVICA, 2011, 108 (01) : 77 - 102
  • [23] Anisotropic Hardy-Lorentz Spaces with Variable Exponents
    Almeida, Victor
    Betancor, Jorge J.
    Rodriguez-Mesa, Lourdes
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (06): : 1219 - 1273
  • [24] Vector valued inequalities and Littlewood-Paley operators on Hardy spaces
    Sato, Shuichi
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (01) : 61 - 84
  • [25] Riesz transform characterizations of variable Hardy-Lorentz spaces
    Wu, Lian
    Zhou, Dejian
    Zhuo, Ciqiang
    Jiao, Yong
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (03): : 747 - 780
  • [26] LITTLEWOOD-PALEY CHARACTERIZATION OF WEIGHTED HARDY SPACES ASSOCIATED WITH OPERATORS
    Hu, Guorong
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (02) : 250 - 267
  • [27] The Commutators of Parameterized Littlewood-Paley Operators on Weighted Hardy Spaces
    Han, Yanyan
    Wang, Cuiling
    Wu, Huoxiong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (01)
  • [28] Multilinear Littlewood-Paley operators and commutators on weighted Hardy spaces
    Han, Yanyan
    Wen, Yongming
    Wu, Huoxiong
    Xue, Qingying
    ANALYSIS AND APPLICATIONS, 2025,
  • [29] Continuity for commutators of Littlewood-Paley operators on certain Hardy spaces
    Liu, LZ
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2003, 40 (01) : 41 - 60
  • [30] Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications
    Long Huang
    Jun Liu
    Dachun Yang
    Wen Yuan
    The Journal of Geometric Analysis, 2019, 29 : 1991 - 2067