Let a→:=(a1,…,an)∈[1,∞)n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vec {a}:=(a_1,\ldots ,a_n)\in [1,\infty )^n$$\end{document}, p→:=(p1,…,pn)∈(0,∞)n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vec {p}:=(p_1,\ldots ,p_n)\in (0,\infty )^n$$\end{document} and Ha→p→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} be the anisotropic mixed-norm Hardy space associated with a→\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vec {a}$$\end{document} defined via the non-tangential grand maximal function. In this article, via first establishing a Calderón–Zygmund decomposition and a discrete Calderón reproducing formula, the authors then characterize Ha→p→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, respectively, by means of atoms, the Lusin area function, the Littlewood–Paley g-function or gλ∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g_{\lambda }^*$$\end{document}-function. The obtained Littlewood–Paley g-function characterization of Ha→p→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} coincidentally confirms a conjecture proposed by Hart et al. (Trans Am Math Soc, https://doi.org/10.1090/tran/7312, 2017). Applying the aforementioned Calderón–Zygmund decomposition as well as the atomic characterization of Ha→p→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, the authors establish a finite atomic characterization of Ha→p→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, which further induces a criterion on the boundedness of sublinear operators from Ha→p→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} into a quasi-Banach space. Then, applying this criterion, the authors obtain the boundedness of anisotropic Calderón–Zygmund operators from Ha→p→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} to itself [or to the mixed-norm Lebesgue space Lp→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{\vec {p}}(\mathbb {R}^n)$$\end{document}]. The obtained atomic characterizations of Ha→p→(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} and boundedness of anisotropic Calderón–Zygmund operators on these Hardy-type spaces positively answer two questions mentioned by Cleanthous et al. (J Geom Anal 27:2758–2787, 2017). All these results are new even for the isotropic mixed-norm Hardy spaces on Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^n$$\end{document}.