Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications

被引:2
|
作者
Long Huang
Jun Liu
Dachun Yang
Wen Yuan
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
来源
关键词
Anisotropic (mixed-norm) Hardy space; Calderón–Zygmund decomposition; Discrete Calderón reproducing formula; Atom; Littlewood–Paley function; Calderón–Zygmund operator; Primary 42B35; Secondary 42B30; 42B25; 42B20; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let a→:=(a1,…,an)∈[1,∞)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {a}:=(a_1,\ldots ,a_n)\in [1,\infty )^n$$\end{document}, p→:=(p1,…,pn)∈(0,∞)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {p}:=(p_1,\ldots ,p_n)\in (0,\infty )^n$$\end{document} and Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} be the anisotropic mixed-norm Hardy space associated with a→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {a}$$\end{document} defined via the non-tangential grand maximal function. In this article, via first establishing a Calderón–Zygmund decomposition and a discrete Calderón reproducing formula, the authors then characterize Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, respectively, by means of atoms, the Lusin area function, the Littlewood–Paley g-function or gλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\lambda }^*$$\end{document}-function. The obtained Littlewood–Paley g-function characterization of Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} coincidentally confirms a conjecture proposed by Hart et al. (Trans Am Math Soc, https://doi.org/10.1090/tran/7312, 2017). Applying the aforementioned Calderón–Zygmund decomposition as well as the atomic characterization of Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, the authors establish a finite atomic characterization of Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, which further induces a criterion on the boundedness of sublinear operators from Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} into a quasi-Banach space. Then, applying this criterion, the authors obtain the boundedness of anisotropic Calderón–Zygmund operators from Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} to itself [or to the mixed-norm Lebesgue space Lp→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\vec {p}}(\mathbb {R}^n)$$\end{document}]. The obtained atomic characterizations of Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} and boundedness of anisotropic Calderón–Zygmund operators on these Hardy-type spaces positively answer two questions mentioned by Cleanthous et al. (J Geom Anal 27:2758–2787, 2017). All these results are new even for the isotropic mixed-norm Hardy spaces on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}.
引用
收藏
页码:1991 / 2067
页数:76
相关论文
共 50 条