Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications

被引:2
|
作者
Long Huang
Jun Liu
Dachun Yang
Wen Yuan
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
来源
关键词
Anisotropic (mixed-norm) Hardy space; Calderón–Zygmund decomposition; Discrete Calderón reproducing formula; Atom; Littlewood–Paley function; Calderón–Zygmund operator; Primary 42B35; Secondary 42B30; 42B25; 42B20; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let a→:=(a1,…,an)∈[1,∞)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {a}:=(a_1,\ldots ,a_n)\in [1,\infty )^n$$\end{document}, p→:=(p1,…,pn)∈(0,∞)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {p}:=(p_1,\ldots ,p_n)\in (0,\infty )^n$$\end{document} and Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} be the anisotropic mixed-norm Hardy space associated with a→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {a}$$\end{document} defined via the non-tangential grand maximal function. In this article, via first establishing a Calderón–Zygmund decomposition and a discrete Calderón reproducing formula, the authors then characterize Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, respectively, by means of atoms, the Lusin area function, the Littlewood–Paley g-function or gλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\lambda }^*$$\end{document}-function. The obtained Littlewood–Paley g-function characterization of Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} coincidentally confirms a conjecture proposed by Hart et al. (Trans Am Math Soc, https://doi.org/10.1090/tran/7312, 2017). Applying the aforementioned Calderón–Zygmund decomposition as well as the atomic characterization of Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, the authors establish a finite atomic characterization of Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document}, which further induces a criterion on the boundedness of sublinear operators from Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} into a quasi-Banach space. Then, applying this criterion, the authors obtain the boundedness of anisotropic Calderón–Zygmund operators from Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} to itself [or to the mixed-norm Lebesgue space Lp→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\vec {p}}(\mathbb {R}^n)$$\end{document}]. The obtained atomic characterizations of Ha→p→(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)$$\end{document} and boundedness of anisotropic Calderón–Zygmund operators on these Hardy-type spaces positively answer two questions mentioned by Cleanthous et al. (J Geom Anal 27:2758–2787, 2017). All these results are new even for the isotropic mixed-norm Hardy spaces on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}.
引用
收藏
页码:1991 / 2067
页数:76
相关论文
共 50 条
  • [41] Littlewood-Paley Function and Molecular Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 71 - 107
  • [42] Musielak-Orlicz-Lorentz Hardy Spaces: Maximal Function, Finite Atomic, and Littlewood-Paley Characterizations with Applications to Dual Spaces and Summability of Fourier Transforms
    Jia, Hongchao
    Chang, Der-Chen
    Weisz, Ferenc
    Yang, Dachun
    Yuan, Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (01) : 1 - 77
  • [43] MULTIPLE VECTOR-VALUED, MIXED-NORM ESTIMATES FOR LITTLEWOOD-PALEY SQUARE FUNCTIONS
    Benea, Cristina
    Muscalu, Camil
    PUBLICACIONS MATEMATIQUES, 2022, 66 (02) : 631 - 681
  • [44] Sharp Norm Estimates for the Bergman Operator From Weighted Mixed-norm Spaces to Weighted Hardy Spaces
    Cascante, Carme
    Fabrega, Joan
    Ortega, Joaquin M.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (06): : 1257 - 1284
  • [45] Mixed-norm Herz-slice spaces and their applications
    Zhang, Lihua
    Zhou, Jiang
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2025, 40 (01)
  • [46] ATOMIC DECOMPOSITION OF VARIABLE HARDY SPACES VIA LITTLEWOOD-PALEY-STEIN THEORY
    Tan, Jian
    ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (01): : 87 - 100
  • [47] LITTLEWOOD-PALEY gλ*-FUNCTION CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Yan, X.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2024, 13 (01): : 100 - 123
  • [48] MIXED-NORM α-MODULATION SPACES
    Cleanthous, Galatia
    Georgiadis, Athanasios G.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (05) : 3323 - 3356
  • [49] Characterization of Parabolic Hardy Spaces by Littlewood–Paley Functions
    Shuichi Sato
    Results in Mathematics, 2018, 73
  • [50] Parametrized Littlewood-Paley operators on Hardy and weak Hardy spaces
    Ding, Yong
    Lu, Shanzhen
    Xue, Qingying
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (04) : 351 - 363