Littlewood-Paley Characterizations of Weighted Anisotropic Triebel-Lizorkin Spaces via Averages on Balls II

被引:1
|
作者
Liu, Jun [1 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ China, Lab Math & Complex Syst, Beijing 100875, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Anisotropic weighted Triebel-Lizorkin space; ball average; Lusin-area function; g(lambda)*-function; HARDY-SPACES; BESOV;
D O I
10.4171/ZAA/1648
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is the second part of two works of the authors on the same topic. Let Ad, be the matrix diag{2a',..., 2a.}, with a := (ai,..., an) E (0, o)n, and let w E A (Ad) be a Muckenhoupt Aoc-weight with respect to A. In this article, the authors characterize the weighted anisotropic Triebel Lizorkin space F2,',q(Ad,; w) with smoothness order a E (0, 2(_) in terms of the Lusin-area function and the Littlewood Paley gA*-function, defined via the difference between f (x) and its ball average Bb -k f (X) : 1Bp(x, b -k)1 fgp(x,b-k) f (y) dg, V X E II) Vk E {1,2,...}, where b := Idet And, a(Ad,) denotes the set of all eigenvalues of Ad, zeta E (1, minflAl : zeta E 0-(Ad)}], zeta_ := log zeta_. Further, p denotes the step homogeneous quasi -norm associated with Ad, and, for any k E {1, 2,...} and x E 71, Bp(x,b k) := {y E r:Th : p(x y) < Irk}. As applications, the authors obtain a series of characterizations for weighted anisotropic Triebel Lizorkin spaces Fp (Ad; w) via pointwise inequalities involving ball averages.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [1] Littlewood-Paley Characterizations of Weighted Anisotropic Triebel-Lizorkin Spaces via Averages on Balls I
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (04): : 397 - 418
  • [2] Littlewood-Paley Characterizations of Hajlasz-Sobolev and Triebel-Lizorkin Spaces via Averages on Balls
    Chang, Der-Chen
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    POTENTIAL ANALYSIS, 2017, 46 (02) : 227 - 259
  • [3] Littlewood-Paley Characterizations of Hajłasz-Sobolev and Triebel-Lizorkin Spaces via Averages on Balls
    Der-Chen Chang
    Jun Liu
    Dachun Yang
    Wen Yuan
    Potential Analysis, 2017, 46 : 227 - 259
  • [4] Littlewood-Paley characterizations of Triebel-Lizorkin-Morrey spaces via ball averages
    Zhang, Junwei
    Zhuo, Ciqiang
    Yang, Dachun
    He, Ziyi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 150 : 76 - 103
  • [5] A NOTE OF LITTLEWOOD-PALEY FUNCTIONS ON TRIEBEL-LIZORKIN SPACES
    Liu, Feng
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 659 - 672
  • [6] Littlewood-Paley Functions and Triebel-Lizorkin Spaces, Besov Spaces
    Fan, Dashan
    Zhao, Fayou
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03): : 267 - 288
  • [7] Littlewood-Paley characterization of BMO and Triebel-Lizorkin spaces
    Tselishchev, Anton
    Vasilyev, Ioann
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (10) : 2029 - 2043
  • [8] Littlewood-Paley characterizations of fractional Sobolev spaces via averages on balls
    Dai, Feng
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (06) : 1135 - 1163
  • [9] A characterization of Hajlasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions
    Koskela, Pekka
    Yang, Dachun
    Zhou, Yuan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2637 - 2661
  • [10] POINTWISE CHARACTERIZATIONS OF BESOV AND TRIEBEL-LIZORKIN SPACES IN TERMS OF AVERAGES ON BALLS
    Yang, Dachun
    Yuan, Wen
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) : 7631 - 7655