Littlewood-Paley Characterizations of Weighted Anisotropic Triebel-Lizorkin Spaces via Averages on Balls II

被引:1
|
作者
Liu, Jun [1 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ China, Lab Math & Complex Syst, Beijing 100875, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Anisotropic weighted Triebel-Lizorkin space; ball average; Lusin-area function; g(lambda)*-function; HARDY-SPACES; BESOV;
D O I
10.4171/ZAA/1648
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is the second part of two works of the authors on the same topic. Let Ad, be the matrix diag{2a',..., 2a.}, with a := (ai,..., an) E (0, o)n, and let w E A (Ad) be a Muckenhoupt Aoc-weight with respect to A. In this article, the authors characterize the weighted anisotropic Triebel Lizorkin space F2,',q(Ad,; w) with smoothness order a E (0, 2(_) in terms of the Lusin-area function and the Littlewood Paley gA*-function, defined via the difference between f (x) and its ball average Bb -k f (X) : 1Bp(x, b -k)1 fgp(x,b-k) f (y) dg, V X E II) Vk E {1,2,...}, where b := Idet And, a(Ad,) denotes the set of all eigenvalues of Ad, zeta E (1, minflAl : zeta E 0-(Ad)}], zeta_ := log zeta_. Further, p denotes the step homogeneous quasi -norm associated with Ad, and, for any k E {1, 2,...} and x E 71, Bp(x,b k) := {y E r:Th : p(x y) < Irk}. As applications, the authors obtain a series of characterizations for weighted anisotropic Triebel Lizorkin spaces Fp (Ad; w) via pointwise inequalities involving ball averages.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [41] Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) : 2611 - 2661
  • [42] CHARACTERIZATIONS OF VARIABLE TRIEBEL-LIZORKIN-TYPE SPACES VIA BALL AVERAGES
    Zhuo, Ciqiang
    Chang, Der-Chen
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) : 19 - 40
  • [43] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC WEAK MUSIELAK-ORLICZ HARDY SPACES
    Li, Bo
    Sun, Ruirui
    Liao, Minfeng
    Li, Baode
    NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 39 - 78
  • [44] APPROXIMATION PROPERTIES OF COMBINATION OF MULTIVARIATE AVERAGES ON TRIEBEL-LIZORKIN SPACES
    He, Shaoyong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01): : 357 - 374
  • [45] Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces
    Bownik, M
    Ho, KP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) : 1469 - 1510
  • [46] Real-variable characterizations and their applications of matrix-weighted Triebel-Lizorkin spaces
    Wang, Qi
    Yang, Dachun
    Zhang, Yangyang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [47] Haar functions in weighted Besov and Triebel-Lizorkin spaces
    Malecka, Agnieszka
    JOURNAL OF APPROXIMATION THEORY, 2015, 200 : 1 - 27
  • [48] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Li, Baode
    Fan, Xingya
    Yang, Dachun
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 279 - 314
  • [49] Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type
    Han, Yongsheng
    Mueller, Detlef
    Yang, Dachun
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) : 1505 - 1537
  • [50] Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces
    Kyriazis, George
    Petrushev, Pencho
    Xu, Yuan
    STUDIA MATHEMATICA, 2008, 186 (02) : 161 - 202