Learning Minimax-Optimal Terminal State Estimators and Smoothers

被引:0
|
作者
Zhang, Xiangyuan [1 ,2 ]
Velicheti, Raj Kiriti [1 ,2 ]
Basar, Tamer [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Minimax Filtering; Prediction; Smoothing; Policy Gradient; Sample Complexity; ROBUST-CONTROL;
D O I
10.1016/j.ifacol.2023.10.447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop the first model-free policy gradient (PG) algorithm for the minimax state estimation of discrete-time linear dynamical systems, where adversarial disturbances could corrupt both dynamics and measurements. Specifically, the proposed algorithm learns a minimax-optimal solution for three fundamental tasks in robust (minimax) estimation, namely terminal state filtering, terminal state prediction, and smoothing, in a unified fashion. We further establish convergence and finite sample complexity guarantees for the proposed PG algorithm. Additionally, we propose a model-free algorithm to evaluate the attenuation (robustness) level of any estimator or smoother, which serves as a model-free solution to identify the maximum size of the disturbance under which the estimator will still be robust. We demonstrate the effectiveness of the proposed algorithms through extensive numerical experiments. Copyright (c) 2023 The Authors.
引用
收藏
页码:11545 / 11550
页数:6
相关论文
共 50 条
  • [1] Minimax-Optimal Policy Learning Under Unobserved Confounding
    Kallus, Nathan
    Zhou, Angela
    [J]. MANAGEMENT SCIENCE, 2021, 67 (05) : 2870 - 2890
  • [2] Minimax-Optimal Location Estimation
    Gupta, Shivam
    Lee, Jasper C. H.
    Price, Eric
    Valiant, Paul
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Analysis and design of minimax-optimal interpolators
    Choi, H
    Munson, DC
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (06) : 1571 - 1579
  • [4] Minimax-optimal classification with dyadic decision trees
    Scott, C
    Nowak, RD
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1335 - 1353
  • [5] Minimax-optimal Inference from Partial Rankings
    Hajek, Bruce
    Oh, Sewoong
    Xu, Jiaming
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [6] Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits
    Li, Yingkai
    Wang, Yining
    Zhou, Yuan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (01) : 372 - 388
  • [7] MINIMAX-OPTIMAL NONPARAMETRIC REGRESSION IN HIGH DIMENSIONS
    Yang, Yun
    Tokdar, Surya T.
    [J]. ANNALS OF STATISTICS, 2015, 43 (02): : 652 - 674
  • [8] Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits
    Li, Yingkai
    Wang, Yining
    Zhou, Yuan
    [J]. CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [9] MINIMAX-OPTIMAL STOP RULES AND DISTRIBUTIONS IN SECRETARY PROBLEMS
    HILL, TP
    KRENGEL, U
    [J]. ANNALS OF PROBABILITY, 1991, 19 (01): : 342 - 353
  • [10] COMPARISON OF MINIMAX-OPTIMAL AND MEAN-SQUARE-OPTIMAL PURSUIT STRATEGIES
    MASLOV, EP
    KHARCHEV, VN
    [J]. AUTOMATION AND REMOTE CONTROL, 1973, 34 (05) : 687 - 694