Analysis and design of minimax-optimal interpolators

被引:31
|
作者
Choi, H
Munson, DC
机构
[1] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
D O I
10.1109/78.678470
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider a class of interpolation algorithms, including the least-squares optimal Yen interpolator, and we derive a closed-form expression for the interpolation error for interpolators of this type. The error depends on the eigenvalue distribution of a matrix that is specified for each set of sampling points. The error expression can be used to prove that the Yen interpolator is optimal. The implementation of the Yen algorithm suffers from numerical ill conditioning, forcing the use of a regularized, approximate solution. We suggest anew, approximate solution consisting of a sine-kernel interpolator with specially chosen weighting coefficients. The newly designed sinc-kernel interpolator is compared with the usual sine interpolator using Jacobian (area) weighting through numerical simulations. We show that the sine interpolator with Jacobian weighting works well only when the sampling is nearly uniform. The newly designed sine-kernel interpolator is shown to perform better than the sine interpolator with Jacobian weighting.
引用
收藏
页码:1571 / 1579
页数:9
相关论文
共 50 条
  • [1] Minimax-Optimal Location Estimation
    Gupta, Shivam
    Lee, Jasper C. H.
    Price, Eric
    Valiant, Paul
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] Minimax-optimal Inference from Partial Rankings
    Hajek, Bruce
    Oh, Sewoong
    Xu, Jiaming
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [3] Minimax-optimal classification with dyadic decision trees
    Scott, C
    Nowak, RD
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1335 - 1353
  • [4] Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits
    Li, Yingkai
    Wang, Yining
    Zhou, Yuan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (01) : 372 - 388
  • [5] MINIMAX-OPTIMAL NONPARAMETRIC REGRESSION IN HIGH DIMENSIONS
    Yang, Yun
    Tokdar, Surya T.
    [J]. ANNALS OF STATISTICS, 2015, 43 (02): : 652 - 674
  • [6] Minimax-Optimal Policy Learning Under Unobserved Confounding
    Kallus, Nathan
    Zhou, Angela
    [J]. MANAGEMENT SCIENCE, 2021, 67 (05) : 2870 - 2890
  • [7] Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits
    Li, Yingkai
    Wang, Yining
    Zhou, Yuan
    [J]. CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [8] Learning Minimax-Optimal Terminal State Estimators and Smoothers
    Zhang, Xiangyuan
    Velicheti, Raj Kiriti
    Basar, Tamer
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 11545 - 11550
  • [9] MINIMAX-OPTIMAL STOP RULES AND DISTRIBUTIONS IN SECRETARY PROBLEMS
    HILL, TP
    KRENGEL, U
    [J]. ANNALS OF PROBABILITY, 1991, 19 (01): : 342 - 353
  • [10] COMPARISON OF MINIMAX-OPTIMAL AND MEAN-SQUARE-OPTIMAL PURSUIT STRATEGIES
    MASLOV, EP
    KHARCHEV, VN
    [J]. AUTOMATION AND REMOTE CONTROL, 1973, 34 (05) : 687 - 694