Minimax-Optimal Location Estimation

被引:0
|
作者
Gupta, Shivam [1 ]
Lee, Jasper C. H. [2 ]
Price, Eric [1 ]
Valiant, Paul [3 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Univ Wisconsin Madison, Madison, WI USA
[3] Purdue Univ, W Lafayette, IN USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Location estimation is one of the most basic questions in parametric statistics. Suppose we have a known distribution density f, and we get n i.i.d. samples from f(x - mu) for some unknown shift mu. The task is to estimate mu to high accuracy with high probability. The maximum likelihood estimator (MLE) is known to be asymptotically optimal as n -> infinity, but what is possible for finite n? In this paper, we give two location estimators that are optimal under different criteria: 1) an estimator that has minimax-optimal estimation error subject to succeeding with probability 1 - delta and 2) a confidence interval estimator which, subject to its output interval containing mu with probability at least 1 - delta, has the minimum expected squared interval width among all shift-invariant estimators. The latter construction can be generalized to minimizing the expectation of any loss function on the interval width.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Minimax-Optimal Hypothesis Testing With Estimation-Dependent Costs
    Jajamovich, Guido H.
    Tajer, Ali
    Wang, Xiaodong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (12) : 6151 - 6165
  • [2] Analysis and design of minimax-optimal interpolators
    Choi, H
    Munson, DC
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (06) : 1571 - 1579
  • [3] Minimax-optimal Inference from Partial Rankings
    Hajek, Bruce
    Oh, Sewoong
    Xu, Jiaming
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [4] Minimax-optimal classification with dyadic decision trees
    Scott, C
    Nowak, RD
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1335 - 1353
  • [5] Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits
    Li, Yingkai
    Wang, Yining
    Zhou, Yuan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (01) : 372 - 388
  • [6] MINIMAX-OPTIMAL NONPARAMETRIC REGRESSION IN HIGH DIMENSIONS
    Yang, Yun
    Tokdar, Surya T.
    [J]. ANNALS OF STATISTICS, 2015, 43 (02): : 652 - 674
  • [7] Minimax-Optimal Policy Learning Under Unobserved Confounding
    Kallus, Nathan
    Zhou, Angela
    [J]. MANAGEMENT SCIENCE, 2021, 67 (05) : 2870 - 2890
  • [8] Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits
    Li, Yingkai
    Wang, Yining
    Zhou, Yuan
    [J]. CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [9] Learning Minimax-Optimal Terminal State Estimators and Smoothers
    Zhang, Xiangyuan
    Velicheti, Raj Kiriti
    Basar, Tamer
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 11545 - 11550
  • [10] MINIMAX-OPTIMAL STOP RULES AND DISTRIBUTIONS IN SECRETARY PROBLEMS
    HILL, TP
    KRENGEL, U
    [J]. ANNALS OF PROBABILITY, 1991, 19 (01): : 342 - 353