Minimax-Optimal Location Estimation

被引:0
|
作者
Gupta, Shivam [1 ]
Lee, Jasper C. H. [2 ]
Price, Eric [1 ]
Valiant, Paul [3 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Univ Wisconsin Madison, Madison, WI USA
[3] Purdue Univ, W Lafayette, IN USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Location estimation is one of the most basic questions in parametric statistics. Suppose we have a known distribution density f, and we get n i.i.d. samples from f(x - mu) for some unknown shift mu. The task is to estimate mu to high accuracy with high probability. The maximum likelihood estimator (MLE) is known to be asymptotically optimal as n -> infinity, but what is possible for finite n? In this paper, we give two location estimators that are optimal under different criteria: 1) an estimator that has minimax-optimal estimation error subject to succeeding with probability 1 - delta and 2) a confidence interval estimator which, subject to its output interval containing mu with probability at least 1 - delta, has the minimum expected squared interval width among all shift-invariant estimators. The latter construction can be generalized to minimizing the expectation of any loss function on the interval width.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] MINIMAX-OPTIMAL STRATEGIES FOR THE BEST-CHOICE PROBLEM WHEN A BOUND IS KNOWN FOR THE EXPECTED NUMBER OF OBJECTS
    HILL, TP
    KENNEDY, DP
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (04) : 937 - 951
  • [32] E(s2)-optimal and minimax-optimal cyclic supersaturated designs via multi-objective simulated annealing
    Koukouvinos, Christos
    Mylona, Kalliopi
    Simos, Dimitris E.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (06) : 1639 - 1646
  • [33] Minimax-optimal decoding of movement goals from local field potentials using complex spectral features
    Angjelichinoski, Marko
    Banerjee, Taposh
    Choi, John
    Pesaran, Bijan
    Tarokh, Vahid
    [J]. JOURNAL OF NEURAL ENGINEERING, 2019, 16 (04)
  • [34] Optimal axis orientation for rectilinear minisum and minimax location
    Drezner, Z
    Wesolowsky, GO
    [J]. IIE TRANSACTIONS, 1998, 30 (10) : 981 - 986
  • [35] Optimal axis orientation for rectilinear minisum and minimax location
    Drezner, Z.
    Wesolowsky, G.O.
    [J]. IIE Transactions (Institute of Industrial Engineers), 1998, 30 (10): : 981 - 986
  • [36] MINIMAX ESTIMATION OF SMOOTH OPTIMAL TRANSPORT MAPS
    Huetter, Jan-Christian
    Rigollet, Philippe
    [J]. ANNALS OF STATISTICS, 2021, 49 (02): : 1166 - 1194
  • [37] MINIMAX ESTIMATION OF LOCATION VECTORS FOR A WIDE CLASS OF DENSITIES
    BERGER, J
    [J]. ANNALS OF STATISTICS, 1975, 3 (06): : 1318 - 1328
  • [38] ADAPTIVE AND MINIMAX OPTIMAL ESTIMATION OF THE TAIL COEFFICIENT
    Carpentier, Alexandra
    Kim, Arlene K. H.
    [J]. STATISTICA SINICA, 2015, 25 (03) : 1133 - 1144
  • [39] Estimation of KL Divergence: Optimal Minimax Rate
    Bu, Yuheng
    Zou, Shaofeng
    Liang, Yingbin
    Veeravalli, Venugopal V.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2648 - 2674
  • [40] Minimax optimal level-set estimation
    Willett, R. M.
    Nowak, R. D.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) : 2965 - 2979