Learning Minimax-Optimal Terminal State Estimators and Smoothers

被引:0
|
作者
Zhang, Xiangyuan [1 ,2 ]
Velicheti, Raj Kiriti [1 ,2 ]
Basar, Tamer [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Minimax Filtering; Prediction; Smoothing; Policy Gradient; Sample Complexity; ROBUST-CONTROL;
D O I
10.1016/j.ifacol.2023.10.447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop the first model-free policy gradient (PG) algorithm for the minimax state estimation of discrete-time linear dynamical systems, where adversarial disturbances could corrupt both dynamics and measurements. Specifically, the proposed algorithm learns a minimax-optimal solution for three fundamental tasks in robust (minimax) estimation, namely terminal state filtering, terminal state prediction, and smoothing, in a unified fashion. We further establish convergence and finite sample complexity guarantees for the proposed PG algorithm. Additionally, we propose a model-free algorithm to evaluate the attenuation (robustness) level of any estimator or smoother, which serves as a model-free solution to identify the maximum size of the disturbance under which the estimator will still be robust. We demonstrate the effectiveness of the proposed algorithms through extensive numerical experiments. Copyright (c) 2023 The Authors.
引用
收藏
页码:11545 / 11550
页数:6
相关论文
共 50 条
  • [31] Optimal minimax random designs for weighted least squares estimators
    Azriel, D.
    [J]. BIOMETRIKA, 2023, 110 (01) : 273 - 280
  • [32] Minimax Optimal Estimators for Additive Scalar Functionals of Discrete Distributions
    Fukuchi, Kazuto
    Sakuma, Jun
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2103 - 2107
  • [33] LEARNING OPTIMAL MULTIGRID SMOOTHERS VIA NEURAL NETWORKS
    Huang, Ru
    Li, Ruipeng
    Xi, Yuanzhe
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : S199 - S225
  • [34] A Bit-Parallel Tabu Search Algorithm for Finding E(s2)-Optimal and Minimax-Optimal Supersaturated Designs
    Morales, Luis B.
    Bulutoglu, Dursun A.
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS, 2023, 2023
  • [35] MINIMAX-OPTIMAL STRATEGIES FOR THE BEST-CHOICE PROBLEM WHEN A BOUND IS KNOWN FOR THE EXPECTED NUMBER OF OBJECTS
    HILL, TP
    KENNEDY, DP
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (04) : 937 - 951
  • [36] E(s2)-optimal and minimax-optimal cyclic supersaturated designs via multi-objective simulated annealing
    Koukouvinos, Christos
    Mylona, Kalliopi
    Simos, Dimitris E.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (06) : 1639 - 1646
  • [37] Minimax-optimal decoding of movement goals from local field potentials using complex spectral features
    Angjelichinoski, Marko
    Banerjee, Taposh
    Choi, John
    Pesaran, Bijan
    Tarokh, Vahid
    [J]. JOURNAL OF NEURAL ENGINEERING, 2019, 16 (04)
  • [38] Nearly minimax-optimal rates for noisy sparse phase retrieval via early-stopped mirror descent
    Wu, Fan
    Rebeschini, Patrick
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (02) : 633 - 713
  • [39] Minimax Strategy of Optimal Unambiguous State Discrimination
    张文海
    余宝龙
    曹卓良
    叶柳
    [J]. Communications in Theoretical Physics, 2012, 58 (08) : 209 - 212
  • [40] Minimax Strategy of Optimal Unambiguous State Discrimination
    Zhang Wen-Hai
    Yu Long-Bao
    Cao Zhuo-Liang
    Ye Liu
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (02) : 209 - 212