Learning Minimax-Optimal Terminal State Estimators and Smoothers

被引:0
|
作者
Zhang, Xiangyuan [1 ,2 ]
Velicheti, Raj Kiriti [1 ,2 ]
Basar, Tamer [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Minimax Filtering; Prediction; Smoothing; Policy Gradient; Sample Complexity; ROBUST-CONTROL;
D O I
10.1016/j.ifacol.2023.10.447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop the first model-free policy gradient (PG) algorithm for the minimax state estimation of discrete-time linear dynamical systems, where adversarial disturbances could corrupt both dynamics and measurements. Specifically, the proposed algorithm learns a minimax-optimal solution for three fundamental tasks in robust (minimax) estimation, namely terminal state filtering, terminal state prediction, and smoothing, in a unified fashion. We further establish convergence and finite sample complexity guarantees for the proposed PG algorithm. Additionally, we propose a model-free algorithm to evaluate the attenuation (robustness) level of any estimator or smoother, which serves as a model-free solution to identify the maximum size of the disturbance under which the estimator will still be robust. We demonstrate the effectiveness of the proposed algorithms through extensive numerical experiments. Copyright (c) 2023 The Authors.
引用
下载
收藏
页码:11545 / 11550
页数:6
相关论文
共 50 条
  • [21] Optimal false discovery control of minimax estimators
    Song, Qifan
    Cheng, Guang
    BERNOULLI, 2023, 29 (03) : 1959 - 1982
  • [22] MINIMAX PROPERTIES OF OPTIMAL LINEAR ESTIMATORS.
    Scott, Peter D.
    Lainiotis, Demetrios G.
    Modeling and Simulation, Proceedings of the Annual Pittsburgh Conference, 1600,
  • [23] An empirical study of minimax-optimal fractional delays for low-pass signals
    Basu, S
    Bresler, Y
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2002, 49 (04): : 288 - 292
  • [24] Minimax-Optimal Multi-Agent RL in Markov Games With a Generative Model
    Li, Gen
    Chi, Yuejie
    Wei, Yuting
    Chen, Yuxin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [25] On E(s2)-optimal and minimax-optimal supersaturated designs with 20 rows and 76 columns
    Morales, Luis B.
    Bulutoglu, Dursun A.
    JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (07) : 344 - 355
  • [26] On the Enumeration of E(s2)-Optimal and Minimax-Optimal k-Circulant Supersaturated Designs
    Morales, Luis B.
    Vega, Gerardo
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (04) : 149 - 160
  • [27] Convex and Nonconvex Optimization Are Both Minimax-Optimal for Noisy Blind Deconvolution Under Random Designs
    Chen, Yuxin
    Fan, Jianqing
    Wang, Bingyan
    Yan, Yuling
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 858 - 868
  • [28] Minimax FIR smoothers for deterministic continuous-time state space models
    Han, Soohee
    Kwon, Bo Kyu
    Kwon, Wook Hyun
    AUTOMATICA, 2009, 45 (06) : 1561 - 1566
  • [29] Minimax-Optimal Rates For Sparse Additive Models Over Kernel Classes Via Convex Programming
    Raskutti, Garvesh
    Wainwright, Martin J.
    Yu, Bin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 389 - 427
  • [30] MINIMAX APPROACH TO DESIGN OF LOW SENSITIVITY STATE ESTIMATORS
    DAPPOLITO, JA
    HUTCHINSON, CE
    AUTOMATICA, 1972, 8 (05) : 599 - +