Fractional Matchings in Graphs from the Spectral Radius

被引:0
|
作者
Chen, Qian-Qian [1 ]
Guo, Ji-Ming [1 ]
Wang, Zhiwen [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional matching number; Spectral radius; Graph; Matching number; EIGENVALUES;
D O I
10.1007/s40840-024-01706-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n, \nu <^>*}$$\end{document}(Gn,nu & lowast;& lowast;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G}<^>*_{n,\nu <^>*})$$\end{document} the collection of all (connected) graphs of order n having a fractional matching number nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <^>*$$\end{document}. This paper characterizes the graphs in Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n,\nu <^>*}$$\end{document} and Gn,nu & lowast;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}<^>*_{n,\nu <^>*}$$\end{document} with the maximum spectral radius, and establishes a lower bound for the spectral radius of graphs of order n to guarantee that their fractional matching numbers are at least tau+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau +\frac{1}{2}$$\end{document}. In addition, we explore the relationship between the spectral radius, perfect matching and fractional perfect matching of G. Moreover, we present a spectral condition guaranteeing that the matching number of a graph is at least k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document}, which generalizes some previous known results.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [42] On the spectral radius of bicyclic graphs
    Yu, AM
    Tian, F
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (52) : 91 - 101
  • [43] The spectral radius of graphs on surfaces
    Ellingham, MN
    Zha, XY
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (01) : 45 - 56
  • [44] The spectral radius of irregular graphs
    Shi, Lingsheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) : 189 - 196
  • [45] Walks and the spectral radius of graphs
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (01) : 257 - 268
  • [46] On the Laplacian Spectral Radius of Graphs
    Xu, Guanghui
    Xu, Changqing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 164 - 167
  • [47] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2020, 114 : 3 - 12
  • [48] Spectral radius of bipartite graphs
    Liu, Chia-an
    Weng, Chih-wen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 474 : 30 - 43
  • [49] Connectivity and spectral radius of graphs
    Wu, Qingfang
    Zhang, Pengli
    Feng, Lihua
    ARS COMBINATORIA, 2019, 142 : 197 - 206
  • [50] Spectral radius and Hamiltonian graphs
    Lu, Mei
    Liu, Huiqing
    Tian, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1670 - 1674