On the spectral radius of bipartite graphs

被引:0
|
作者
Fan, Dandan [1 ]
Wang, Guoping [1 ]
Zao, Yuying [1 ]
机构
[1] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang, Peoples R China
关键词
Spectral radius; Matching number; Vertex connectivity; LAPLACIAN;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The adjacency matrix A(G) of a graph G is the n x n matrix with its (i, j)-entry equal to 1 if u(i) and u(j) are adjacent, and 0 otherwise. The spectral radius of G is the largest eigenvalue of A(G). In this paper we determine the graph with maximum spectral radius among all connected bipartite graphs of order n with a given matching number and a given vertex connectivity, respectively.
引用
下载
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [1] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2019, 113 : 149 - 158
  • [2] Spectral radius of bipartite graphs
    Liu, Chia-an
    Weng, Chih-wen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 474 : 30 - 43
  • [3] On the distance spectral radius of bipartite graphs
    Nath, Milan
    Paul, Somnath
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1285 - 1296
  • [4] The maximum spectral radius of irregular bipartite graphs
    Xue, Jie
    Liu, Ruifang
    Guo, Jiaxin
    Shu, Jinlong
    ADVANCES IN APPLIED MATHEMATICS, 2023, 142
  • [5] On the distance Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 207 - 213
  • [6] The Laplacian spectral radius of some bipartite graphs
    Zhang, Xiaoling
    Zhang, Heping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1610 - 1619
  • [7] On the spectral radius of bipartite graphs with given diameter
    Zhai, Mingqing
    Liu, Ruifang
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1165 - 1170
  • [8] An Extending Result on Spectral Radius of Bipartite Graphs
    Cheng, Yen-Jen
    Fan, Feng-lei
    Weng, Chih-wen
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (02): : 263 - 274
  • [9] The Laplacian Spectral Radius of a Class of Bipartite Graphs
    Tan Xuezhong
    Liu, Bolian
    UTILITAS MATHEMATICA, 2012, 89 : 161 - 167
  • [10] Factors, spectral radius and toughness in bipartite graphs
    Chen Y.
    Fan D.
    Lin H.
    Discrete Applied Mathematics, 2024, 355 : 223 - 231