Factors, spectral radius and toughness in bipartite graphs

被引:0
|
作者
Chen Y. [1 ]
Fan D. [2 ,3 ]
Lin H. [1 ,2 ]
机构
[1] College of Mathematics and System Science, Xinjiang University, Xinjiang, Urumqi
[2] School of Mathematics, East China University of Science and Technology, Shanghai
[3] College of Mathematics and Physics, Xinjiang Agricultural University, Xinjiang, Urumqi
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Bipartite toughness; Factor; Spectral radius;
D O I
10.1016/j.dam.2024.05.008
中图分类号
学科分类号
摘要
The bipartite toughness tB(G) of a non-complete bipartite graph G=(X,Y) is defined as tB(G)=min{[Formula presented]}, in which the minimum is taken over all proper subsets S⊂X (or S⊂Y) such that G−S is disconnected and c(G−S)>1. A non-complete bipartite graph G is tB-tough if |S|≥tBc(G−S) for every proper subset S⊂X (or S⊂Y) with c(G−S)>1. By incorporating the toughness and spectral conditions, we provide spectral radius and edge conditions for 2-factors in 1-tough balanced bipartite graphs. © 2024 Elsevier B.V.
引用
收藏
页码:223 / 231
页数:8
相关论文
共 50 条
  • [1] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2019, 113 : 149 - 158
  • [2] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2020, 114 : 3 - 12
  • [3] Spectral radius of bipartite graphs
    Liu, Chia-an
    Weng, Chih-wen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 474 : 30 - 43
  • [4] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    arXiv, 2023,
  • [5] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [6] Path factors in bipartite graphs from size or spectral radius
    Hao, Yifang
    Li, Shuchao
    AEQUATIONES MATHEMATICAE, 2024, 98 (05) : 1177 - 1210
  • [7] On the distance spectral radius of bipartite graphs
    Nath, Milan
    Paul, Somnath
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1285 - 1296
  • [8] Toughness, hamiltonicity and spectral radius in graphs
    Fan, Dandan
    Lin, Huiqiu
    Lu, Hongliang
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 110
  • [9] The maximum spectral radius of irregular bipartite graphs
    Xue, Jie
    Liu, Ruifang
    Guo, Jiaxin
    Shu, Jinlong
    ADVANCES IN APPLIED MATHEMATICS, 2023, 142
  • [10] On the distance Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 207 - 213