Fractional Matchings in Graphs from the Spectral Radius

被引:0
|
作者
Chen, Qian-Qian [1 ]
Guo, Ji-Ming [1 ]
Wang, Zhiwen [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional matching number; Spectral radius; Graph; Matching number; EIGENVALUES;
D O I
10.1007/s40840-024-01706-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n, \nu <^>*}$$\end{document}(Gn,nu & lowast;& lowast;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G}<^>*_{n,\nu <^>*})$$\end{document} the collection of all (connected) graphs of order n having a fractional matching number nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <^>*$$\end{document}. This paper characterizes the graphs in Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n,\nu <^>*}$$\end{document} and Gn,nu & lowast;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}<^>*_{n,\nu <^>*}$$\end{document} with the maximum spectral radius, and establishes a lower bound for the spectral radius of graphs of order n to guarantee that their fractional matching numbers are at least tau+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau +\frac{1}{2}$$\end{document}. In addition, we explore the relationship between the spectral radius, perfect matching and fractional perfect matching of G. Moreover, we present a spectral condition guaranteeing that the matching number of a graph is at least k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document}, which generalizes some previous known results.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] On the spectral radius of unicyclic graphs with perfect matchings
    Chang, A
    Tian, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 : 237 - 250
  • [12] On the Aα-spectral Radius of Graphs Without Large Matchings
    Hao, Yifang
    Li, Shuchao
    Zhao, Qin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3131 - 3156
  • [13] ON THE DISTANCE SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH PERFECT MATCHINGS
    Zhang, Xiao Ling
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 569 - 587
  • [14] On the Signless Laplacian Spectral Radius of Bicyclic Graphs with Perfect Matchings
    Zhang, Jing-Ming
    Huang, Ting-Zhu
    Guo, Ji-Ming
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [15] Spectral radius and fractional [a, b]-factor of graphs
    Li, Yuang
    Fan, Dandan
    Zhu, Yinfen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 715 : 32 - 45
  • [16] The spanning k-trees, perfect matchings and spectral radius of graphs
    Fan, Dandan
    Goryainov, Sergey
    Huang, Xueyi
    Lin, Huiqiu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 7264 - 7275
  • [17] Spectral radius conditions for fractional [a, b]-covered graphs
    Wang, Junjie
    Zheng, Jiaxin
    Chen, Yonglei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 666 : 1 - 10
  • [18] Fractional perfect matching and distance spectral radius in graphs
    Zhang, Lei
    Hou, Yaoping
    Ren, Haizhen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 480 - 488
  • [19] Fractional matchings on regular graphs
    Guan, Xiaxia
    Ma, Tianlong
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (13): : 18942 - 18953
  • [20] The ε-spectral radius of trees with perfect matchings
    Huang, Lu
    Yu, Aimei
    Hao, Rong-Xia
    DISCRETE APPLIED MATHEMATICS, 2025, 363 : 110 - 130