Fractional Matchings in Graphs from the Spectral Radius

被引:0
|
作者
Chen, Qian-Qian [1 ]
Guo, Ji-Ming [1 ]
Wang, Zhiwen [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional matching number; Spectral radius; Graph; Matching number; EIGENVALUES;
D O I
10.1007/s40840-024-01706-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n, \nu <^>*}$$\end{document}(Gn,nu & lowast;& lowast;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {G}<^>*_{n,\nu <^>*})$$\end{document} the collection of all (connected) graphs of order n having a fractional matching number nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <^>*$$\end{document}. This paper characterizes the graphs in Gn,nu & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{n,\nu <^>*}$$\end{document} and Gn,nu & lowast;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}<^>*_{n,\nu <^>*}$$\end{document} with the maximum spectral radius, and establishes a lower bound for the spectral radius of graphs of order n to guarantee that their fractional matching numbers are at least tau+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau +\frac{1}{2}$$\end{document}. In addition, we explore the relationship between the spectral radius, perfect matching and fractional perfect matching of G. Moreover, we present a spectral condition guaranteeing that the matching number of a graph is at least k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document}, which generalizes some previous known results.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ON THE SPECTRAL RADIUS OF CACTUSES WITH PERFECT MATCHINGS
    Huang, Ziwen
    Deng, Hanyuan
    Simic, Slobodan K.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2011, 5 (01) : 14 - 21
  • [22] Spectral characterization of matchings in graphs
    Monfared, Keivan Hassani
    Mallik, Sudipta
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 496 : 407 - 419
  • [23] Fractional matching number and spectral radius of nonnegative matrices of graphs
    Liu, Ruifang
    Lai, Hong-Jian
    Guo, Litao
    Xue, Jie
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4133 - 4145
  • [24] A note on maximum fractional matchings of graphs
    Tianlong Ma
    Eddie Cheng
    Yaping Mao
    Xu Wang
    Journal of Combinatorial Optimization, 2022, 43 : 253 - 264
  • [25] A note on maximum fractional matchings of graphs
    Ma, Tianlong
    Cheng, Eddie
    Mao, Yaping
    Wang, Xu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 253 - 264
  • [26] ON THE α-SPECTRAL RADIUS OF GRAPHS
    Guo, Haiyan
    Zhou, Bo
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (02) : 431 - 458
  • [27] On the spectral radius of graphs
    Yu, AM
    Lu, M
    Tian, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 : 41 - 49
  • [28] Distance spectral radius and fractional matching in t-connected graphs
    Hu, Yanling
    Lin, Huiqiu
    Zhang, Yuke
    Zhang, Zhiguo
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (18): : 3128 - 3141
  • [29] Fractional matching, factors and spectral radius in graphs involving minimum degree
    Lou, Jing
    Liu, Ruifang
    Ao, Guoyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 677 : 337 - 351
  • [30] Spectral radius, fractional [ a , b ]-factor and ID-factor-critical graphs
    Fan, Ao
    Liu, Ruifang
    Ao, Guoyan
    DISCRETE MATHEMATICS, 2024, 347 (07)