Symmetry and Pieri rules for the bisymmetric Macdonald polynomials

被引:0
|
作者
Concha, Manuel [1 ]
Lapointe, Luc [1 ]
机构
[1] Univ Talca, Inst Matemat, 2 Norte 685, Talca, Chile
关键词
JACK POLYNOMIALS; EIGENFUNCTIONS; SUPERSPACE;
D O I
10.1016/j.ejc.2024.103973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and t-symmetrization of nonsymmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald polynomials satisfies a symmetry property generalizing that satisfied by the usual Macdonald polynomials. We then obtain Pieri rules for the bisymmetric Macdonald polynomials where the sums are over certain vertical strips. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Further Pieri-type formulas for the nonsymmetric Macdonald polynomial
    W. Baratta
    [J]. Journal of Algebraic Combinatorics, 2012, 36 : 45 - 66
  • [32] Quantum Pieri rules for isotropic Grassmannians
    Buch, Anders Skovsted
    Kresch, Andrew
    Tamvakis, Harry
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (02) : 345 - 405
  • [33] Quantum Pieri rules for tautological subbundles
    Leung, Naichung Conan
    Li, Changzheng
    [J]. ADVANCES IN MATHEMATICS, 2013, 248 : 279 - 307
  • [34] Equivariant Pieri rules for isotropic Grassmannians
    Li, Changzheng
    Ravikumar, Vijay
    [J]. MATHEMATISCHE ANNALEN, 2016, 365 (1-2) : 881 - 909
  • [35] INTERVAL STRUCTURE OF THE PIERI FORMULA FOR GROTHENDIECK POLYNOMIALS
    Pons, Viviane
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (01) : 123 - 146
  • [36] Pieri’s formula for generalized Schur polynomials
    Yasuhide Numata
    [J]. Journal of Algebraic Combinatorics, 2007, 26 : 27 - 45
  • [37] Pieri's formula for generalized Schur polynomials
    Numata, Yasuhide
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 26 (01) : 27 - 45
  • [38] Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials
    Etingof, PI
    Kirillov, AA
    [J]. COMPOSITIO MATHEMATICA, 1996, 102 (02) : 179 - 202
  • [39] Pieri's formula for generalized Schur polynomials
    Numata, Yasuhide
    [J]. Journal of Algebraic Combinatorics, 2007, 26 (01): : 27 - 45
  • [40] Pieri Formulae and Specialisation of Super Jacobi Polynomials
    Sergeev, A. N.
    Zharinov, E. D.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2019, 19 (04): : 377 - 388