Further Pieri-type formulas for the nonsymmetric Macdonald polynomial

被引:0
|
作者
W. Baratta
机构
[1] University of Melbourne,Department of Mathematics
来源
关键词
Macdonald polynomial; Pieri formulas; Nonsymmetric; q-Binomial coefficients;
D O I
暂无
中图分类号
学科分类号
摘要
The branching coefficients in the expansion of the elementary symmetric function multiplied by a symmetric Macdonald polynomial Pκ(z) are known explicitly. These formulas generalise the known r=1 case of the Pieri-type formulas for the nonsymmetric Macdonald polynomials Eη(z). In this paper, we extend beyond the case r=1 for the nonsymmetric Macdonald polynomials, giving the full generalisation of the Pieri-type formulas for symmetric Macdonald polynomials. The decomposition also allows the evaluation of the generalised binomial coefficients \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tbinom{\eta }{\nu }_{q,t}$\end{document} associated with the nonsymmetric Macdonald polynomials.
引用
收藏
页码:45 / 66
页数:21
相关论文
共 31 条