Pieri-Type Formulas for Nonsymmetric Macdonald Polynomials

被引:6
|
作者
Baratta, Wendy [1 ]
机构
[1] Univ Melbourne, Dept Math, Melbourne, Vic 3010, Australia
关键词
D O I
10.1093/imrn/rnp034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In symmetric Macdonald polynomial theory, the Pieri formula gives the branching coefficients for the product of the rth elementary symmetric function e(r)(z) and the Macdonald polynomial P-kappa(z). In this paper we give the nonsymmetric analogs for the cases r=1 and r= n-1. We do this by first deducing the decomposition for the product of any nonsymmetric Macdonald polynomial E-eta(z) with z(i) in terms of nonsymmetric Macdonald polynomials. As a corollary of finding the branching coefficients of e(1)(z)E-eta(z), we evaluate the generalized binomial coefficients ((eta)(nu)) associated with the nonsymmetric Macdonald polynomials for vertical bar eta vertical bar = vertical bar nu vertical bar + 1.
引用
收藏
页码:2829 / 2854
页数:26
相关论文
共 50 条