Equivariant Pieri rules for isotropic Grassmannians

被引:4
|
作者
Li, Changzheng [1 ]
Ravikumar, Vijay [2 ]
机构
[1] Inst for Basic Sci Korea, Ctr Geometry & Phys, Pohang 790784, South Korea
[2] Chennai Math Inst, H1 SIPCOT IT Pk, Kelambakkam, Siruseri, India
关键词
DOUBLE SCHUBERT POLYNOMIALS; KAC-MOODY GROUP; QUANTUM COHOMOLOGY; CLASSICAL-GROUPS; K-THEORY; CALCULUS; FORMULAS; GIAMBELLI; PUZZLES; RING;
D O I
10.1007/s00208-015-1266-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a Pieri rule for the torus-equivariant cohomology of (submaximal) Grassmannians of Lie types B, C, and D. To the authors' best knowledge, our rule is the first manifestly positive formula, beyond the equivariant Chevalley formula. We also give a simple proof of the equivariant Pieri rule for the ordinary (type A) Grassmannian.
引用
收藏
页码:881 / 909
页数:29
相关论文
共 50 条
  • [1] Equivariant Pieri rules for isotropic Grassmannians
    Changzheng Li
    Vijay Ravikumar
    [J]. Mathematische Annalen, 2016, 365 : 881 - 909
  • [2] Quantum Pieri rules for isotropic Grassmannians
    Anders Skovsted Buch
    Andrew Kresch
    Harry Tamvakis
    [J]. Inventiones mathematicae, 2009, 178 : 345 - 405
  • [3] Quantum Pieri rules for isotropic Grassmannians
    Buch, Anders Skovsted
    Kresch, Andrew
    Tamvakis, Harry
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (02) : 345 - 405
  • [4] PIERI TYPE FORMULA FOR ISOTROPIC GRASSMANNIANS, THE OPERATOR APPROACH
    PRAGACZ, P
    RATAJSKI, J
    [J]. MANUSCRIPTA MATHEMATICA, 1993, 79 (02) : 127 - 151
  • [5] Pieri rules for the K-theory of cominuscule Grassmannians
    Buch, Anders Skovsted
    Ravikumar, Vijay
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 109 - 132
  • [6] Puzzles and (equivariant) cohomology of Grassmannians
    Knutson, A
    Tao, T
    [J]. DUKE MATHEMATICAL JOURNAL, 2003, 119 (02) : 221 - 260
  • [7] A Pieri-type formula for even orthogonal Grassmannians
    Pragacz, P
    Ratajski, J
    [J]. FUNDAMENTA MATHEMATICAE, 2003, 178 (01) : 49 - 96
  • [8] Equivariant Pieri Rule for the homology of the affine Grassmannian
    Thomas Lam
    Mark Shimozono
    [J]. Journal of Algebraic Combinatorics, 2012, 36 : 623 - 648
  • [9] Equivariant Pieri Rule for the homology of the affine Grassmannian
    Lam, Thomas
    Shimozono, Mark
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (04) : 623 - 648
  • [10] Integral equivariant cohomology of affine Grassmannians
    Anderson, David
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03): : 727 - 741