LLT polynomials in the Schiffmann algebra

被引:0
|
作者
Blasiak, Jonah [1 ]
Haiman, Mark [2 ]
Morse, Jennifer [3 ]
Pun, Anna [4 ]
Seelinger, George H. [5 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
[3] Univ Virginia, Dept Math, Charlottesville, VA USA
[4] Baruch Coll, Dept Math, CUNY, New York, NY USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI USA
来源
基金
美国国家科学基金会;
关键词
HALL ALGEBRA; COMBINATORIAL FORMULA; ELLIPTIC CURVE;
D O I
10.1515/crelle-2024-0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies Lambda (X-m,X-n ) subset of E of the algebra of symmetric functions embedded in the elliptic Hall algebra E of Burban and Schiffmann. As a corollary, we deduce an explicit raising operator formula for the del operator applied to any LLT polynomial. In particular, we obtain a formula for backward difference del(m) s(lambda) which serves as a starting point for our proof of the Loehr-Warrington conjecture in a companion paper to this one.
引用
收藏
页码:93 / 133
页数:41
相关论文
共 50 条
  • [21] GAUSS POLYNOMIALS AND THE ROTATION ALGEBRA
    CHOI, MD
    ELLIOTT, GA
    YUI, NK
    INVENTIONES MATHEMATICAE, 1990, 99 (02) : 225 - 246
  • [22] NUMBER OF POLYNOMIALS IN ORDERED ALGEBRA
    SEKANINOVA, A
    SEKANINA, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1971, 21 (03) : 391 - +
  • [23] Algebra of Primitive Nonassociative Polynomials
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 275 - 287
  • [24] THE ALGEBRA OF CONTINUOUS PIECEWISE POLYNOMIALS
    BILLERA, LJ
    ADVANCES IN MATHEMATICS, 1989, 76 (02) : 170 - 183
  • [25] Special polynomials by matrix algebra
    Beker, H
    AMERICAN JOURNAL OF PHYSICS, 1998, 66 (09) : 812 - 813
  • [26] THE CENTRAL POLYNOMIALS FOR THE GRASSMANN ALGEBRA
    Brandao, Antonio Pereira, Jr.
    Koshlukov, Plamen
    Krasilnikov, Alexei
    da Silva, Elida Alves
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 179 (01) : 127 - 144
  • [27] The central polynomials for the Grassmann algebra
    Antônio Pereira Brandão
    Plamen Koshlukov
    Alexei Krasilnikov
    Élida Alves da Silva
    Israel Journal of Mathematics, 2010, 179 : 127 - 144
  • [28] Polynomials and equations in arabic algebra
    Oaks, Jeffrey A.
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2009, 63 (02) : 169 - 203
  • [29] SCHUBERT POLYNOMIALS AND THE NILCOXETER ALGEBRA
    FOMIN, S
    STANLEY, RP
    ADVANCES IN MATHEMATICS, 1994, 103 (02) : 196 - 207
  • [30] Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular LLT polynomials
    Huh, JiSun
    Nam, Sun-Young
    Yoo, Meesue
    DISCRETE MATHEMATICS, 2020, 343 (03)