共 50 条
LLT polynomials in the Schiffmann algebra
被引:0
|作者:
Blasiak, Jonah
[1
]
Haiman, Mark
[2
]
Morse, Jennifer
[3
]
Pun, Anna
[4
]
Seelinger, George H.
[5
]
机构:
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
[3] Univ Virginia, Dept Math, Charlottesville, VA USA
[4] Baruch Coll, Dept Math, CUNY, New York, NY USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI USA
来源:
基金:
美国国家科学基金会;
关键词:
HALL ALGEBRA;
COMBINATORIAL FORMULA;
ELLIPTIC CURVE;
D O I:
10.1515/crelle-2024-0012
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies Lambda (X-m,X-n ) subset of E of the algebra of symmetric functions embedded in the elliptic Hall algebra E of Burban and Schiffmann. As a corollary, we deduce an explicit raising operator formula for the del operator applied to any LLT polynomial. In particular, we obtain a formula for backward difference del(m) s(lambda) which serves as a starting point for our proof of the Loehr-Warrington conjecture in a companion paper to this one.
引用
收藏
页码:93 / 133
页数:41
相关论文