LLT polynomials in the Schiffmann algebra

被引:0
|
作者
Blasiak, Jonah [1 ]
Haiman, Mark [2 ]
Morse, Jennifer [3 ]
Pun, Anna [4 ]
Seelinger, George H. [5 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
[3] Univ Virginia, Dept Math, Charlottesville, VA USA
[4] Baruch Coll, Dept Math, CUNY, New York, NY USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI USA
来源
基金
美国国家科学基金会;
关键词
HALL ALGEBRA; COMBINATORIAL FORMULA; ELLIPTIC CURVE;
D O I
10.1515/crelle-2024-0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies Lambda (X-m,X-n ) subset of E of the algebra of symmetric functions embedded in the elliptic Hall algebra E of Burban and Schiffmann. As a corollary, we deduce an explicit raising operator formula for the del operator applied to any LLT polynomial. In particular, we obtain a formula for backward difference del(m) s(lambda) which serves as a starting point for our proof of the Loehr-Warrington conjecture in a companion paper to this one.
引用
收藏
页码:93 / 133
页数:41
相关论文
共 50 条