THE CENTRAL POLYNOMIALS FOR THE GRASSMANN ALGEBRA

被引:19
|
作者
Brandao, Antonio Pereira, Jr. [1 ]
Koshlukov, Plamen [2 ]
Krasilnikov, Alexei [3 ]
da Silva, Elida Alves [4 ]
机构
[1] Univ Fed Campina Grande, UAME CCT, BR-58109970 Campina Grande, PB, Brazil
[2] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[4] Univ Fed Goias, Dept Matemat, BR-75705220 Catalao, GO, Brazil
基金
巴西圣保罗研究基金会;
关键词
IDENTITIES;
D O I
10.1007/s11856-010-0074-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe the central polynomials for the infinite-dimensional unitary Grassmann algebra G over an infinite field F of characteristic not equal 2. We exhibit a set of polynomials that generates the vector space C( G) of the central polynomials of G as a T-space. Using a deep result of Shchigolev we prove that if char F = p > 2 then the T-space C( G) is not finitely generated. Moreover, over such a field F, C( G) is a limit T-space, that is, C( G) is not a finitely generated T-space but every larger T-space W not greater than or equal to C( G) is. We obtain similar results for the infinite-dimensional non-unitary Grassmann algebra H as well.
引用
收藏
页码:127 / 144
页数:18
相关论文
共 50 条
  • [1] The central polynomials for the Grassmann algebra
    Antônio Pereira Brandão
    Plamen Koshlukov
    Alexei Krasilnikov
    Élida Alves da Silva
    Israel Journal of Mathematics, 2010, 179 : 127 - 144
  • [2] Identities and central polynomials with involution for the Grassmann algebra
    Centrone, Lucio
    Goncalves, Dimas Jose
    Silva, Dalton Couto
    JOURNAL OF ALGEBRA, 2020, 560 : 219 - 240
  • [3] Zq-graded identities and central polynomials of the Grassmann algebra
    Guimaraes, Alan
    Fidelis, Claudemir
    Dias, Laise
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 12 - 36
  • [4] Limit T-subspaces and the central polynomials in n variables of the Grassmann algebra
    Goncalves, Dimas Jose
    Krasilnikov, Alexei
    Sviridova, Irina
    JOURNAL OF ALGEBRA, 2012, 371 : 156 - 174
  • [5] Z2 and Z-graded central polynomials of the Grassmann algebra
    Guimaraes, Alan De Araujo
    Fidelis, Claudemir
    Koshlukov, Plamen
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (05) : 1035 - 1056
  • [6] THE IDENTITIES AND THE CENTRAL POLYNOMIALS OF THE INFINITE DIMENSIONAL UNITARY GRASSMANN ALGEBRA OVER A FINITE FIELD
    Bekh-Ochir, C.
    Rankin, S. A.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (03) : 819 - 829
  • [7] Z-gradings on the Grassmann algebra over infinite fields: Graded identities and central polynomials
    Fideles, Claudemir
    Guimaraes, Alan
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2023, 33 (08) : 1713 - 1735
  • [8] The central polynomials for the finite dimensional Grassmann algebras
    Koshlukov, Plamen
    Krasilnikov, Alexei
    da Silva, Elida Alves
    ALGEBRA & DISCRETE MATHEMATICS, 2009, (03): : 69 - 76
  • [9] NEW CENTRAL POLYNOMIALS FOR THE MATRIX ALGEBRA
    DRENSKY, V
    ISRAEL JOURNAL OF MATHEMATICS, 1995, 92 (1-3) : 235 - 248
  • [10] Commutant algebra of superderivations on a Grassmann algebra
    Nishiyama, K
    Wang, HQ
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (01) : 8 - 11