THE CENTRAL POLYNOMIALS FOR THE GRASSMANN ALGEBRA

被引:19
|
作者
Brandao, Antonio Pereira, Jr. [1 ]
Koshlukov, Plamen [2 ]
Krasilnikov, Alexei [3 ]
da Silva, Elida Alves [4 ]
机构
[1] Univ Fed Campina Grande, UAME CCT, BR-58109970 Campina Grande, PB, Brazil
[2] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[4] Univ Fed Goias, Dept Matemat, BR-75705220 Catalao, GO, Brazil
基金
巴西圣保罗研究基金会;
关键词
IDENTITIES;
D O I
10.1007/s11856-010-0074-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe the central polynomials for the infinite-dimensional unitary Grassmann algebra G over an infinite field F of characteristic not equal 2. We exhibit a set of polynomials that generates the vector space C( G) of the central polynomials of G as a T-space. Using a deep result of Shchigolev we prove that if char F = p > 2 then the T-space C( G) is not finitely generated. Moreover, over such a field F, C( G) is a limit T-space, that is, C( G) is not a finitely generated T-space but every larger T-space W not greater than or equal to C( G) is. We obtain similar results for the infinite-dimensional non-unitary Grassmann algebra H as well.
引用
收藏
页码:127 / 144
页数:18
相关论文
共 50 条
  • [21] CLASSICAL SPIN AND GRASSMANN ALGEBRA
    BEREZIN, FA
    MARINOV, MS
    JETP LETTERS, 1975, 21 (11) : 320 - 321
  • [22] POLYNOMIAL IDENTITIES OF GRASSMANN ALGEBRA
    KRAKOWSKI, D
    REGEV, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) : 429 - 438
  • [23] Schubert Calculus on a Grassmann Algebra
    Gatto, Letterio
    Santiago, Taise
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (02): : 200 - 212
  • [24] THEOREMS IN GRASSMANN EXTENSIVE ALGEBRA
    SCHWEITZER, AR
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (04) : 490 - 490
  • [25] Graded central polynomials for the matrix algebra of order two
    Brandao, Antonio Pereira, Jr.
    Koshlukov, Plamen
    Krasilnikov, Alexei
    MONATSHEFTE FUR MATHEMATIK, 2009, 157 (03): : 247 - 256
  • [26] Duality for ideals in the Grassmann algebra
    Dibag, I
    JOURNAL OF ALGEBRA, 1996, 183 (01) : 24 - 37
  • [27] Grassmann, geometric algebra and cosmology
    Lasenby, Anthony
    ANNALEN DER PHYSIK, 2010, 19 (3-5) : 161 - 176
  • [28] Graded central polynomials for the matrix algebra of order two
    Antônio Pereira Brandão
    Plamen Koshlukov
    Alexei Krasilnikov
    Monatshefte für Mathematik, 2009, 157 : 247 - 256
  • [29] INTEGRALS OVER A GRASSMANN ALGEBRA
    PROKHOROV, LV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1981, 47 (02) : 413 - 416
  • [30] General Form of the *-Commutator on the Grassmann Algebra
    I. V. Tyutin
    Theoretical and Mathematical Physics, 2001, 128 : 1271 - 1292