THE CENTRAL POLYNOMIALS FOR THE GRASSMANN ALGEBRA

被引:19
|
作者
Brandao, Antonio Pereira, Jr. [1 ]
Koshlukov, Plamen [2 ]
Krasilnikov, Alexei [3 ]
da Silva, Elida Alves [4 ]
机构
[1] Univ Fed Campina Grande, UAME CCT, BR-58109970 Campina Grande, PB, Brazil
[2] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[4] Univ Fed Goias, Dept Matemat, BR-75705220 Catalao, GO, Brazil
基金
巴西圣保罗研究基金会;
关键词
IDENTITIES;
D O I
10.1007/s11856-010-0074-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe the central polynomials for the infinite-dimensional unitary Grassmann algebra G over an infinite field F of characteristic not equal 2. We exhibit a set of polynomials that generates the vector space C( G) of the central polynomials of G as a T-space. Using a deep result of Shchigolev we prove that if char F = p > 2 then the T-space C( G) is not finitely generated. Moreover, over such a field F, C( G) is a limit T-space, that is, C( G) is not a finitely generated T-space but every larger T-space W not greater than or equal to C( G) is. We obtain similar results for the infinite-dimensional non-unitary Grassmann algebra H as well.
引用
收藏
页码:127 / 144
页数:18
相关论文
共 50 条