Grassmann algebra and fermions at finite temperature

被引:2
|
作者
Charret, IC
Silva, EVC
de Souza, SM
Rojas Santos, O
Thomaz, MT
机构
[1] Univ Fed Lavras, Dept Ciencias Exatas, BR-37200000 Lavras, MG, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[3] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
关键词
D O I
10.1063/1.533008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For any d-dimensional self-interacting fermionic model, all coefficients in the high-temperature expansion of its grand canonical partition function can be put in terms of multivariable Grassmann integrals. A new approach to calculate such coefficients, based on direct exploitation of the Grassmannian nature of fermionic operators, is presented. We apply the method to the soluble Hatsugai-Kohmoto model, reobtaining well-known results. (C) 1999 American Institute of Physics. [S0022-2488(99)00310-2].
引用
收藏
页码:4944 / 4955
页数:12
相关论文
共 50 条