The central polynomials for the Grassmann algebra

被引:0
|
作者
Antônio Pereira Brandão
Plamen Koshlukov
Alexei Krasilnikov
Élida Alves da Silva
机构
[1] UAME/CCT,Departamento de Matemática
[2] UFCG,Departamento de Matemática
[3] IMECC,undefined
[4] UNICAMP,undefined
[5] Universidade de Brasília,undefined
[6] Universidade Federal de Goiás,undefined
来源
关键词
Vector Space; English Translation; Associative Algebra; Polynomial Identity; Vector Subspace;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe the central polynomials for the infinite-dimensional unitary Grassmann algebra G over an infinite field F of characteristic ≠ 2. We exhibit a set of polynomials that generates the vector space C(G) of the central polynomials of G as a T-space. Using a deep result of Shchigolev we prove that if charF = p > 2 then the T-space C(G) is not finitely generated. Moreover, over such a field F, C(G) is a limit T-space, that is, C(G) is not a finitely generated T-space but every larger T-space W ≩ C(G) is. We obtain similar results for the infinite-dimensional nonunitary Grassmann algebra H as well.
引用
收藏
页码:127 / 144
页数:17
相关论文
共 50 条
  • [1] THE CENTRAL POLYNOMIALS FOR THE GRASSMANN ALGEBRA
    Brandao, Antonio Pereira, Jr.
    Koshlukov, Plamen
    Krasilnikov, Alexei
    da Silva, Elida Alves
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 179 (01) : 127 - 144
  • [2] Identities and central polynomials with involution for the Grassmann algebra
    Centrone, Lucio
    Goncalves, Dimas Jose
    Silva, Dalton Couto
    JOURNAL OF ALGEBRA, 2020, 560 : 219 - 240
  • [3] Zq-graded identities and central polynomials of the Grassmann algebra
    Guimaraes, Alan
    Fidelis, Claudemir
    Dias, Laise
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 12 - 36
  • [4] Limit T-subspaces and the central polynomials in n variables of the Grassmann algebra
    Goncalves, Dimas Jose
    Krasilnikov, Alexei
    Sviridova, Irina
    JOURNAL OF ALGEBRA, 2012, 371 : 156 - 174
  • [5] Z2 and Z-graded central polynomials of the Grassmann algebra
    Guimaraes, Alan De Araujo
    Fidelis, Claudemir
    Koshlukov, Plamen
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (05) : 1035 - 1056
  • [6] THE IDENTITIES AND THE CENTRAL POLYNOMIALS OF THE INFINITE DIMENSIONAL UNITARY GRASSMANN ALGEBRA OVER A FINITE FIELD
    Bekh-Ochir, C.
    Rankin, S. A.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (03) : 819 - 829
  • [7] Z-gradings on the Grassmann algebra over infinite fields: Graded identities and central polynomials
    Fideles, Claudemir
    Guimaraes, Alan
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2023, 33 (08) : 1713 - 1735
  • [8] The central polynomials for the finite dimensional Grassmann algebras
    Koshlukov, Plamen
    Krasilnikov, Alexei
    da Silva, Elida Alves
    ALGEBRA & DISCRETE MATHEMATICS, 2009, (03): : 69 - 76
  • [9] NEW CENTRAL POLYNOMIALS FOR THE MATRIX ALGEBRA
    DRENSKY, V
    ISRAEL JOURNAL OF MATHEMATICS, 1995, 92 (1-3) : 235 - 248
  • [10] Commutant algebra of superderivations on a Grassmann algebra
    Nishiyama, K
    Wang, HQ
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (01) : 8 - 11