The central polynomials for the Grassmann algebra

被引:0
|
作者
Antônio Pereira Brandão
Plamen Koshlukov
Alexei Krasilnikov
Élida Alves da Silva
机构
[1] UAME/CCT,Departamento de Matemática
[2] UFCG,Departamento de Matemática
[3] IMECC,undefined
[4] UNICAMP,undefined
[5] Universidade de Brasília,undefined
[6] Universidade Federal de Goiás,undefined
来源
关键词
Vector Space; English Translation; Associative Algebra; Polynomial Identity; Vector Subspace;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe the central polynomials for the infinite-dimensional unitary Grassmann algebra G over an infinite field F of characteristic ≠ 2. We exhibit a set of polynomials that generates the vector space C(G) of the central polynomials of G as a T-space. Using a deep result of Shchigolev we prove that if charF = p > 2 then the T-space C(G) is not finitely generated. Moreover, over such a field F, C(G) is a limit T-space, that is, C(G) is not a finitely generated T-space but every larger T-space W ≩ C(G) is. We obtain similar results for the infinite-dimensional nonunitary Grassmann algebra H as well.
引用
收藏
页码:127 / 144
页数:17
相关论文
共 50 条
  • [21] CLASSICAL SPIN AND GRASSMANN ALGEBRA
    BEREZIN, FA
    MARINOV, MS
    JETP LETTERS, 1975, 21 (11) : 320 - 321
  • [22] POLYNOMIAL IDENTITIES OF GRASSMANN ALGEBRA
    KRAKOWSKI, D
    REGEV, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) : 429 - 438
  • [23] Schubert Calculus on a Grassmann Algebra
    Gatto, Letterio
    Santiago, Taise
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (02): : 200 - 212
  • [24] THEOREMS IN GRASSMANN EXTENSIVE ALGEBRA
    SCHWEITZER, AR
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (04) : 490 - 490
  • [25] Graded central polynomials for the matrix algebra of order two
    Brandao, Antonio Pereira, Jr.
    Koshlukov, Plamen
    Krasilnikov, Alexei
    MONATSHEFTE FUR MATHEMATIK, 2009, 157 (03): : 247 - 256
  • [26] Duality for ideals in the Grassmann algebra
    Dibag, I
    JOURNAL OF ALGEBRA, 1996, 183 (01) : 24 - 37
  • [27] Grassmann, geometric algebra and cosmology
    Lasenby, Anthony
    ANNALEN DER PHYSIK, 2010, 19 (3-5) : 161 - 176
  • [28] Graded central polynomials for the matrix algebra of order two
    Antônio Pereira Brandão
    Plamen Koshlukov
    Alexei Krasilnikov
    Monatshefte für Mathematik, 2009, 157 : 247 - 256
  • [29] INTEGRALS OVER A GRASSMANN ALGEBRA
    PROKHOROV, LV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1981, 47 (02) : 413 - 416
  • [30] General Form of the *-Commutator on the Grassmann Algebra
    I. V. Tyutin
    Theoretical and Mathematical Physics, 2001, 128 : 1271 - 1292