The central polynomials for the Grassmann algebra

被引:0
|
作者
Antônio Pereira Brandão
Plamen Koshlukov
Alexei Krasilnikov
Élida Alves da Silva
机构
[1] UAME/CCT,Departamento de Matemática
[2] UFCG,Departamento de Matemática
[3] IMECC,undefined
[4] UNICAMP,undefined
[5] Universidade de Brasília,undefined
[6] Universidade Federal de Goiás,undefined
来源
关键词
Vector Space; English Translation; Associative Algebra; Polynomial Identity; Vector Subspace;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe the central polynomials for the infinite-dimensional unitary Grassmann algebra G over an infinite field F of characteristic ≠ 2. We exhibit a set of polynomials that generates the vector space C(G) of the central polynomials of G as a T-space. Using a deep result of Shchigolev we prove that if charF = p > 2 then the T-space C(G) is not finitely generated. Moreover, over such a field F, C(G) is a limit T-space, that is, C(G) is not a finitely generated T-space but every larger T-space W ≩ C(G) is. We obtain similar results for the infinite-dimensional nonunitary Grassmann algebra H as well.
引用
收藏
页码:127 / 144
页数:17
相关论文
共 50 条