GRAPHS WITHOUT A RAINBOW PATH OF LENGTH 3

被引:0
|
作者
Babinski, Sebastian [1 ]
Grzesik, Andrzej [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, P-30 348 Krakow, Poland
关键词
extremal graph theory; rainbow coloring; Turan-type problems; TURAN PROBLEM; NUMBERS;
D O I
10.1137/22M1535048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1959, ErdoH \s and Gallai proved the asymptotically optimal bound for the maximum number of edges in graphs not containing a path of a fixed length. Here, we study a rainbow version of their theorem, in which one considers k \geq 1 graphs on a common set of vertices not creating a path having edges from different graphs and asks for the maximum number of edges in each graph. We prove the asymptotically optimal bound in the case of a path on three edges and any k \geq 1.
引用
收藏
页码:629 / 644
页数:16
相关论文
共 50 条
  • [1] Complete graphs and complete bipartite graphs without rainbow path
    Li, Xihe
    Wang, Ligong
    Liu, Xiangxiang
    [J]. DISCRETE MATHEMATICS, 2019, 342 (07) : 2116 - 2126
  • [2] Complete graphs with no rainbow path
    Thomason, Andrew
    Wagner, Peter
    [J]. JOURNAL OF GRAPH THEORY, 2007, 54 (03) : 261 - 266
  • [3] Average Shortest Path Length of Graphs of Diameter 3
    Shimizu, Nobutaka
    Mori, Ryuhei
    [J]. 2016 TENTH IEEE/ACM INTERNATIONAL SYMPOSIUM ON NETWORKS-ON-CHIP (NOCS), 2016,
  • [4] Path decomposition of graphs with given path length
    Zhai M.-Q.
    Lü C.-H.
    [J]. Acta Mathematicae Applicatae Sinica, 2006, 22 (4) : 633 - 638
  • [5] Path Decomposition of Graphs with Given Path Length
    Ming-qing Zhai~(1
    [J]. Acta Mathematicae Applicatae Sinica, 2006, (04) : 633 - 638
  • [6] DIGRAPHS WITHOUT DIRECTED PATH OF LENGTH 2 OR 3
    SOTTEAU, D
    WOJDA, AP
    [J]. DISCRETE MATHEMATICS, 1986, 58 (01) : 105 - 108
  • [7] On the Complexity of Rainbow Vertex Colouring Diametral Path Graphs
    Dyrseth, Jakob
    Lima, Paloma T.
    [J]. Leibniz International Proceedings in Informatics, LIPIcs, 2022, 248
  • [8] Rainbow path and color degree in edge colored graphs
    Das, Anita
    Subrahmanya, S. V.
    Suresh, P.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [9] Graphs without cycles of even length
    Lam, T
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 63 (03) : 435 - 440
  • [10] Complete bipartite graphs without small rainbow subgraphs
    Ma, Zhiqiang
    Mao, Yaping
    Schiermeyer, Ingo
    Wei, Meiqin
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 346 : 248 - 262