GRAPHS WITHOUT A RAINBOW PATH OF LENGTH 3

被引:0
|
作者
Babinski, Sebastian [1 ]
Grzesik, Andrzej [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, P-30 348 Krakow, Poland
关键词
extremal graph theory; rainbow coloring; Turan-type problems; TURAN PROBLEM; NUMBERS;
D O I
10.1137/22M1535048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1959, ErdoH \s and Gallai proved the asymptotically optimal bound for the maximum number of edges in graphs not containing a path of a fixed length. Here, we study a rainbow version of their theorem, in which one considers k \geq 1 graphs on a common set of vertices not creating a path having edges from different graphs and asks for the maximum number of edges in each graph. We prove the asymptotically optimal bound in the case of a path on three edges and any k \geq 1.
引用
收藏
页码:629 / 644
页数:16
相关论文
共 50 条
  • [41] Rainbow connections for outerplanar graphs with diameter 2 and 3
    Huang, Xiaolong
    Li, Xueliang
    Shi, Yongtang
    Yue, Jun
    Zhao, Yan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 277 - 280
  • [42] Core and Conditional Core Path of Specified Length in Special Classes of Graphs
    Balasubramanian, S.
    Harini, S.
    Rangan, C. Pandu
    [J]. WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5431 : 262 - 273
  • [43] A note on packing graphs without cycles of length up to five
    Goerlich, Agnieszka
    Zak, Andrzej
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [44] The spectral radius of graphs without paths and cycles of specified length
    Nikiforov, Vladimir
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2243 - 2256
  • [45] Edge-colorings of complete bipartite graphs without large rainbow trees
    Jin, Zemin
    Li, Lifen
    [J]. ARS COMBINATORIA, 2013, 111 : 75 - 84
  • [46] (Strong) Rainbow Connection on the Splitting of 3-Path
    Septyanto, F.
    Sugeng, K. A.
    [J]. INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862
  • [47] From Path Graphs to Directed Path Graphs
    Chaplick, Steven
    Gutierrez, Marisa
    Leveque, Benjamin
    Tondato, Silvia B.
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 256 - +
  • [48] Rainbow saturation of graphs
    Girao, Antonio
    Lewis, David
    Popielarz, Kamil
    [J]. JOURNAL OF GRAPH THEORY, 2020, 94 (03) : 421 - 444
  • [49] Locally Rainbow Graphs
    Omoomi, Behnaz
    Pourmiri, Ali
    [J]. UTILITAS MATHEMATICA, 2009, 79 : 267 - 275
  • [50] RAINBOW CONNECTION IN GRAPHS
    Chartrand, Gary
    Johns, Garry L.
    McKeon, Kathleen A.
    Zhang, Ping
    [J]. MATHEMATICA BOHEMICA, 2008, 133 (01): : 85 - 98