GRAPHS WITHOUT A RAINBOW PATH OF LENGTH 3

被引:0
|
作者
Babinski, Sebastian [1 ]
Grzesik, Andrzej [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, P-30 348 Krakow, Poland
关键词
extremal graph theory; rainbow coloring; Turan-type problems; TURAN PROBLEM; NUMBERS;
D O I
10.1137/22M1535048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1959, ErdoH \s and Gallai proved the asymptotically optimal bound for the maximum number of edges in graphs not containing a path of a fixed length. Here, we study a rainbow version of their theorem, in which one considers k \geq 1 graphs on a common set of vertices not creating a path having edges from different graphs and asks for the maximum number of edges in each graph. We prove the asymptotically optimal bound in the case of a path on three edges and any k \geq 1.
引用
收藏
页码:629 / 644
页数:16
相关论文
共 50 条
  • [31] PLANAR GRAPHS WITHOUT TRIANGLES ADJACENT TO CYCLES OF LENGTH FROM 3 TO 9 ARE 3-COLORABLE
    Borodin, O., V
    Glebov, A. N.
    Jensen, T. R.
    Raspaud, A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 428 - 440
  • [32] Almost all optimally coloured complete graphs contain a rainbow Hamilton path
    Gould, Stephen
    Kelly, Tom
    Kuehn, Daniela
    Osthus, Deryk
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 156 : 57 - 100
  • [33] Planar 3-Path Graphs
    Byers, Alexis
    Olejniczak, Drake
    Zayed, Mohra
    Zhang, Ping
    [J]. ARS COMBINATORIA, 2020, 149 : 279 - 297
  • [34] GRAPHS WITH A CYCLE OF LENGTH DIVISIBLE BY 3
    CHEN, GT
    SAITO, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (02) : 277 - 292
  • [35] Plane graphs without cycles of length 4, 6, 7 or 8 are 3-colorable
    Wang, Yingqian
    Chen, Ming
    Shen, Liang
    [J]. DISCRETE MATHEMATICS, 2008, 308 (17) : 4014 - 4017
  • [36] Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable
    Wang, Yingqian
    Wu, Qian
    Shen, Liang
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (04) : 232 - 239
  • [37] Planar graphs without cycles of length 4 or 5 are (3,0,0)-colorable
    Hill, Owen
    Smith, Diana
    Wang, Yingqian
    Xu, Lingji
    Yu, Gexin
    [J]. DISCRETE MATHEMATICS, 2013, 313 (20) : 2312 - 2317
  • [38] Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable
    Wang, Yingqian
    Lu, Huajing
    Chen, Ming
    [J]. DISCRETE MATHEMATICS, 2010, 310 (01) : 147 - 158
  • [39] Acyclic 3-choosability of planar graphs without cycles of length from 4 to 12
    Borodin O.V.
    [J]. Journal of Applied and Industrial Mathematics, 2010, 4 (2) : 158 - 162
  • [40] Planar graphs without 3-cycles adjacent to cycles of length 3 or 5 are (3,1)-colorable
    Miao, Zhengke
    Wang, Yingqian
    Zhang, Chuanni
    Zhang, Huajun
    [J]. DISCRETE MATHEMATICS, 2018, 341 (03) : 588 - 599