Graphs without cycles of even length

被引:4
|
作者
Lam, T [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1017/S0004972700019511
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that a bipartite graph with parts of sizes M and N, having no cycles of even length less than or equal to 2(2k + 1), where k is a positive integer, has at most (NM)((k+1)/(2k+1)) + D-k(N + M) edges, where D-k only depends on k. In particular, we show that when k = 1, D-1 = 1 is possible.
引用
收藏
页码:435 / 440
页数:6
相关论文
共 50 条
  • [1] Skew spectra of graphs without even cycles
    Anuradha, A.
    Balakrishnan, R.
    So, Wasin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 : 67 - 80
  • [2] Decompositions of Complete Multipartite Graphs into Cycles of Even Length
    Nicholas J. Cavenagh
    Elizabeth J. Billington
    [J]. Graphs and Combinatorics, 2000, 16 : 49 - 65
  • [3] Decompositions of complete multipartite graphs into cycles of even length
    Cavenagh, NJ
    Billington, EJ
    [J]. GRAPHS AND COMBINATORICS, 2000, 16 (01) : 49 - 65
  • [4] Maximum bisections of graphs without short even cycles
    Lin, Jing
    Zeng, Qinghou
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180
  • [5] On the matching polynomials of graphs with small number of cycles of even length
    Yan, WG
    Yeh, YN
    Zhang, FJ
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 105 (02) : 124 - 130
  • [6] Decomposing Various Graphs into Short Even-Length Cycles
    Daniel Horsley
    [J]. Annals of Combinatorics, 2012, 16 : 571 - 589
  • [7] Decomposing Various Graphs into Short Even-Length Cycles
    Horsley, Daniel
    [J]. ANNALS OF COMBINATORICS, 2012, 16 (03) : 571 - 589
  • [8] Even cycles in graphs
    Conlon, JG
    [J]. JOURNAL OF GRAPH THEORY, 2004, 45 (03) : 163 - 223
  • [9] Four-cycles in graphs without a given even cycle
    Kühn, D
    Osthus, D
    [J]. JOURNAL OF GRAPH THEORY, 2005, 48 (02) : 147 - 156
  • [10] On spectral radius of signed graphs without negative even cycles
    Stanic, Zoran
    Vijayakumar, Ambat
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 89 - 96