Chebyshev-Type Inequalities Involving (k,psi)-Proportional Fractional Integral Operators

被引:0
|
作者
Yewale, Bhagwat R. [1 ]
Pachpatte, Deepak B. [1 ]
Aljaaidi, Tariq A. [2 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431001, Maharashtra, India
[2] Sanaa Univ, Dept Math, Sanaa, Yemen
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Expanding the analytical aspect of mathematics enables researchers to study more cosmic phenomena, especially with regard to the applied sciences related to fractional calculus. In the present paper, we establish some Chebyshev-type inequalities in the case synchronous functions. In order to achieve our goals, we use k,psi-proportional fractional integral operators. Moreover, we present some special cases.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] On Chebychev Type Inequalities for Fractional Integral Operators
    Usta, Fuat
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [42] Chebyshev-Type Polynomials Arising in Poincaré Limit Inequalities
    I. A. Sheipak
    Mathematical Notes, 2022, 112 : 163 - 167
  • [43] Chebyshev-type matrix polynomials and integral transforms
    Kargin, Levent
    Kurt, Veli
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 341 - 350
  • [44] Certain Hermite-Hadamard type inequalities involving generalized fractional integral operators
    Set, Erhan
    Choi, Junesang
    Celik, Baris
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1539 - 1547
  • [45] Hermite-Hadamard-Fejer type inequalities involving generalized fractional integral operators
    Set, Erhan
    Choi, Junesang
    Alan, E. Aykan
    JOURNAL OF ANALYSIS, 2019, 27 (04): : 1007 - 1027
  • [46] Hermite–Hadamard–Fejér type inequalities involving generalized fractional integral operators
    Erhan Set
    Junesang Choi
    E. Aykan Alan
    The Journal of Analysis, 2019, 27 : 1007 - 1027
  • [47] Generalized k-Fractional Integral Operators Associated with Polya-Szego and Chebyshev Types Inequalities
    Zhang, Zhiqiang
    Farid, Ghulam
    Mehmood, Sajid
    Nonlaopon, Kamsing
    Yan, Tao
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [48] NOVEL CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERAL FRACTIONAL-ORDER INTEGRALS WITH THE RABOTNOV FRACTIONAL EXPONENTIAL KERNEL
    Geng, Lu-Lu
    Yang, Xiao-Jun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [49] Certain Inequalities Involving the Fractional q-Integral Operators
    Baleanu, Dumitru
    Agarwal, Praveen
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [50] Some Inequalities of Cebysev Type for Conformable k-Fractional Integral Operators
    Qi, Feng
    Rahman, Gauhar
    Hussain, Sardar Muhammad
    Du, Wei-Shih
    Nisar, Kottakkaran Sooppy
    SYMMETRY-BASEL, 2018, 10 (11):