Chebyshev-Type Inequalities Involving (k,psi)-Proportional Fractional Integral Operators

被引:0
|
作者
Yewale, Bhagwat R. [1 ]
Pachpatte, Deepak B. [1 ]
Aljaaidi, Tariq A. [2 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431001, Maharashtra, India
[2] Sanaa Univ, Dept Math, Sanaa, Yemen
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Expanding the analytical aspect of mathematics enables researchers to study more cosmic phenomena, especially with regard to the applied sciences related to fractional calculus. In the present paper, we establish some Chebyshev-type inequalities in the case synchronous functions. In order to achieve our goals, we use k,psi-proportional fractional integral operators. Moreover, we present some special cases.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Gruss Type Inequalities Involving New Conformable Fractional Integral Operators
    Set, Erhan
    Mumcu, Ilker
    Ozdemir, M. Emin
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [22] ON FRACTIONAL INTEGRAL INEQUALITIES INVOLVING THE SAIGO'S FRACTIONAL INTEGRAL OPERATORS
    Menaria, Naresh
    Purohit, S. D.
    Kumar, Dinesh
    JOURNAL OF SCIENCE AND ARTS, 2016, (04): : 289 - 294
  • [23] CALCULATION OF MULTIVARIATE CHEBYSHEV-TYPE INEQUALITIES
    MEAUX, LM
    SEAMAN, JW
    BOULLION, TL
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 20 (12) : 55 - 60
  • [24] Chebyshev-Type Integral Inequalities for Continuous Fields of Operators Concerning Khatri-Rao Products and Synchronous Properties
    Ploymukda, Arnon
    Chansangiam, Pattrawut
    SYMMETRY-BASEL, 2020, 12 (03):
  • [25] Chebyshev-type inequalities for scale mixtures
    Csiszár, V
    Móri, TF
    Székely, GJ
    STATISTICS & PROBABILITY LETTERS, 2005, 71 (04) : 323 - 335
  • [26] A METHOD FOR OBTAINING CHEBYSHEV-TYPE INEQUALITIES
    ANDREEV, NI
    AUTOMATION AND REMOTE CONTROL, 1981, 42 (05) : 594 - 603
  • [27] Some integral inequalities involving Saigo fractional integral operators
    Houas, Mohamed
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (03) : 681 - 694
  • [28] New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators
    Akdemir, Ahmet Ocak
    Butt, Saad Ihsan
    Nadeem, Muhammad
    Ragusa, Maria Alessandra
    MATHEMATICS, 2021, 9 (02) : 1 - 11
  • [29] CHEBYSHEV TYPE INTEGRAL INEQUALITIES FOR GENERALIZED k-FRACTIONAL CONFORMABLE INTEGRALS
    Habib, Siddra
    Mubeen, Shahid
    Naeem, Muhammad Nawaz
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (04): : 53 - 65
  • [30] SOME INTEGRAL INEQUALITIES IN THE FRAMEWORK OF GENERALIZED K-PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS WITH GENERAL KERNEL
    Napoles Valdes, Juan E.
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (04): : 587 - 596