Chebyshev-Type Inequalities Involving (k,psi)-Proportional Fractional Integral Operators

被引:0
|
作者
Yewale, Bhagwat R. [1 ]
Pachpatte, Deepak B. [1 ]
Aljaaidi, Tariq A. [2 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431001, Maharashtra, India
[2] Sanaa Univ, Dept Math, Sanaa, Yemen
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Expanding the analytical aspect of mathematics enables researchers to study more cosmic phenomena, especially with regard to the applied sciences related to fractional calculus. In the present paper, we establish some Chebyshev-type inequalities in the case synchronous functions. In order to achieve our goals, we use k,psi-proportional fractional integral operators. Moreover, we present some special cases.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Certain Hermite–Hadamard type inequalities involving generalized fractional integral operators
    Erhan Set
    Junesang Choi
    Barış Çelİk
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1539 - 1547
  • [32] Generalized Hermite-Hadamard type inequalities involving fractional integral operators
    Set, Erhan
    Noor, Muhammed Aslam
    Awan, Muhammed Uzair
    Gozpinar, Abdurrahman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [33] Generalized Hermite-Hadamard type inequalities involving fractional integral operators
    Erhan Set
    Muhammed Aslam Noor
    Muhammed Uzair Awan
    Abdurrahman Gözpinar
    Journal of Inequalities and Applications, 2017
  • [34] SOME HERMITE-HADAMARD TYPE INEQUALITIES INVOLVING FRACTIONAL INTEGRAL OPERATORS
    Ciurdariu, Loredana
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 941 - 952
  • [35] ON POLYA-SZEGO AND CHEBYSHEV TYPES INEQUALITIES INVOLVING THE RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS
    Ntouyas, Sotiris K.
    Agarwal, Praveen
    Tariboon, Jessada
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 491 - 504
  • [36] Certain Inequalities Involving Pathway Fractional Integral Operators
    Choi, Junesang
    Agarwal, Praveen
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (04): : 1161 - 1168
  • [37] Minkowski-Type Inequalities Using Generalized Proportional Hadamard Fractional Integral Operators
    Nale, Asha B.
    Panchal, Satish K.
    Chinchane, Vaijanath L.
    FILOMAT, 2021, 35 (09) : 2973 - 2984
  • [38] The Minkowski inequalities via generalized proportional fractional integral operators
    Rahman, Gauhar
    Khan, Aftab
    Abdeljawad, Thabet
    Nisar, Kottakkaran Sooppy
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [39] The Minkowski inequalities via generalized proportional fractional integral operators
    Gauhar Rahman
    Aftab Khan
    Thabet Abdeljawad
    Kottakkaran Sooppy Nisar
    Advances in Difference Equations, 2019
  • [40] CHEBYSHEV-TYPE INEQUALITIES AND LARGE DEVIATION PRINCIPLES
    Borovkov, A. A.
    Logachov, A., V
    Mogulskii, A. A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2021, 66 (04) : 570 - 581