Chebyshev-Type Inequalities Involving (k,psi)-Proportional Fractional Integral Operators

被引:0
|
作者
Yewale, Bhagwat R. [1 ]
Pachpatte, Deepak B. [1 ]
Aljaaidi, Tariq A. [2 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431001, Maharashtra, India
[2] Sanaa Univ, Dept Math, Sanaa, Yemen
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Expanding the analytical aspect of mathematics enables researchers to study more cosmic phenomena, especially with regard to the applied sciences related to fractional calculus. In the present paper, we establish some Chebyshev-type inequalities in the case synchronous functions. In order to achieve our goals, we use k,psi-proportional fractional integral operators. Moreover, we present some special cases.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] ON CHEBYSHEV-TYPE INEQUALITIES FOR PRIMES
    NAIR, M
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (02): : 126 - 129
  • [12] On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators
    Celik, Baris
    Gurbuz, Mustafa C.
    Ozdemir, M. Emin
    Set, Erhan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [13] On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators
    Barış Çelik
    Mustafa Ç. Gürbüz
    M. Emin Özdemir
    Erhan Set
    Journal of Inequalities and Applications, 2020
  • [14] Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions
    Arunrat, Nuttapong
    Nakprasit, Keaitsuda Maneeruk
    Nonlaopon, Kamsing
    Agarwal, Praveen
    Ntouyas, Sotiris K.
    MATHEMATICS, 2022, 10 (03)
  • [15] Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions
    Zhang, Zhiqiang
    Farid, Ghulam
    Mehmood, Sajid
    Jung, Chahn-Yong
    Yan, Tao
    AXIOMS, 2022, 11 (02)
  • [16] Certain inequalities involving generalized fractional k-integral operators
    Nisar, K. S.
    Al-Dhaifallah, M.
    Abouzaid, M. S.
    Agarwal, P.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3376 - 3387
  • [17] Some new Chebyshev type inequalities utilizing generalized fractional integral operators
    Usta, Fuat
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    AIMS MATHEMATICS, 2020, 5 (02): : 1147 - 1161
  • [18] NEW CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL WITH RESPECT TO AN INCREASING FUNCTION
    Varosanec, Sanja
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1351 - 1361
  • [19] Conformable fractional integral inequalities of Chebyshev type
    Set, Erhan
    Mumcu, Ilker
    Demirbas, Sevdenur
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2253 - 2259
  • [20] Conformable fractional integral inequalities of Chebyshev type
    Erhan Set
    İlker Mumcu
    Sevdenur Demirbaş
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2253 - 2259